

Evergreen Application

ACCESSIBILITY
EVALUATION

The goal of this initial evaluation is to convey a general

overview of Web Accessibility and the primary aspects of the

website(s) that do not conform to WCAG 2.1 A and AA Success

Criteria.

Date of Evaluation: June 14 – 27, 2019

Center for Inclusive Design and Innovation

 Confidential © CIDI 2

Table of Contents
Evergreen Application ...1

Evaluation Process and Deliverables ... 4

Evaluation Environment .. 4

Background Summary... 5

Pages Reviewed ... 5

Executive Summary ... 6

Video Demonstration of the Georgia Evergreen Application 6

Overall Conformance ... 6

Remediation Needed ... 8

Reviewer's Report .. 10

Detailed Feedback & Recommendations ... 10

1. WCAG 2.0 1.1.1 A: Appropriate use of alternative text 10

2. WCAG 2.0 1.3.1 A: Information and Relationships 11

3. WCAG 2.0 1.3.1 A: Information and Relationships 11

4. WCAG 2.0 1.3.1 A: Information and Relationships 12

5. WCAG 2.0 1.4.1 A: Use of Color ... 12

6. WCAG 2.0 1.4.3 AA: Color Contrast ... 13

7. WCAG 2.0 1.4.5 AA: Images of Text ... 14

8. WCAG 2.0 2.1.1 A: Keyboard Access .. 14

9. WCAG 2.0 2.4.3 A: Focus Order .. 14

10. WCAG 2.0 2.4.4 A: Link Purpose in Context 15

11. WCAG 2.0 2.4.7 AA: Focus Visible - Focus States & Indicators 15

12. WCAG 2.0 3.3.1 A: Error Identification .. 16

13. WCAG 2.0 4.1.1 A: Validate HTML .. 17

Appendix A: Commonly Used Code Snippets ... 17

Links that open new windows, dialogs or PDFs ... 17

Hiding Content from both visual and screen reader users 19

HTML and WAI-ARIA Landmarks ... 19

Add Skip Navigation ... 19

Content for screen reader users but not sighted users 20

OPTGROUP to group OPTION elements inside a SELECT 20

Center for Inclusive Design and Innovation

 Confidential © CIDI 3

Tab Panel ... 20

Example: ... 23

Keyboard ... 23

Accessibility ... 24

Tables ... 24

Data Tables .. 25

Layout Tables .. 25

Scalable Font and Element Widths (Sizes) ... 26

EM and REM .. 26

Approaches & Responsive Design ... 26

Setting <body> font-size to =”62.5%” .. 26

Using button elements without the default formatting 27

Hiding and showing content with JavaScript DOM Coding 27

ARIA, Dynamic Content, alerts, and feedback .. 30

ARIA and Dynamic Content .. 30

WAI-ARIA ... 30

Live Regions ... 31

ARIA Menus ... 31

Stack Overflow Flyout Menu Summary ... 31

Appendix B: Screenshots .. 32

Appendix C: Useful Resources .. 36

W3C’s Web Accessibility Initiative (WAI) .. 36

Company Information ... 37
Reviewers ... 37

Center for Inclusive Design and Innovation

 Confidential © CIDI 4

Evaluation Process and Deliverables
The evaluation process includes a combination of assistive technology solutions,

detailed code inspection, and manual analysis of the selected URLs. A brief mp4 video

is also being included under the heading “Video Demonstration of the Georgia

Evergreen Application” that highlights some of the aspects documented in this

evaluation using assistive technology solutions commonly used by people with

disabilities.

The evaluation process is a systematic testing of WCAG 2.1 A and AA Success Criteria

using both automated tools and manual checks. Automated tools used may include

any combination of browser Extensions, Addons or toolbars: the WebAIM WAVE

extension, Deque aXe extension, HTML_CodeSniffer, Paciello Group Web Accessibility

Toolbar and Colour Contrast Analyser, NCSU Color Contrast Analyzer, SSA ANDI, and

Firebug. Other tools may be included as they become available.

This report provides a detailed analysis of specific URLs selected for this review, and

their level of conformance with WCAG 2.1 Level A and AA. Solutions for remediation

to meet WCAG 2.1 Level A and AA is also provided. The selected URLs and issues

identified are within a specific point in time, representing a snapshot of the site’s

current state. Issues identified in this report may therefore become modified,

obsolete, or removed with future website iterations and releases.

Accessibility issues detailed in this report are a representation of the site in general.

Many of the recommendations, outlined in this review, can be applied to the rest of

the website to improve accessibility conformance overall.

Incorporating and maintaining accessibility requires ongoing testing and monitoring

throughout the lifecycle of a given website, including its design and development

stages. Doing so, will provide greater assurance that new or additional accessibility

barriers will not be introduced.

The latter part of this document, beginning with the section “Detailed Feedback &

Recommendations,” provides specific code remediation examples and solutions

intended for developers. The accompanying Excel spreadsheet, also intended for

developers, serves as a companion reference and provides both usability and

programmatic information with specific references and code remediation solutions

related to the Georgia Evegreen website.

Evaluation Environment

Software/Configuration Used for Testing

Browsers Used for Testing:

Firefox- 67.0.1

Chrome - 75.0.3770.80

Center for Inclusive Design and Innovation

 Confidential © CIDI 5

Screen Readers Used for Testing:

JAWS (Version 18) for Windows

NVDA (2019) for Windows

Operating Systems Used for Testing:

Windows 10

Screen Resolutions Used for Testing:

1920 x 1080

Background Summary
To provide the most robust sampling of testing for the evaluation process of the

Georgia Evergreen application, the URLs selected for this review were based on the

following criteria:

Pages with the greatest amount of traffic, as determined by analytics

 Most frequently visited pages, which could be determined by your internal

analytics tools.

 Critical pages of importance. For example, essential forms or processes that

need to be completed for customers to receive essential information and

services.

 Pages containing unique elements such as multimedia, dynamic elements,

tables, etc.

 Pages Reviewed
URLs include the following (Refer to Appendix B for Screenshots)

1. Login - https://terran-testbox.gapines.org/eg/staff/

2. Home page - https://terran-testbox.gapines.org/eg/staff/

3. Patron Search - https://terran-

testbox.gapines.org/eg/staff/circ/patron/search

4. Patron Book Check Out - https://terran-

testbox.gapines.org/eg/staff/circ/patron/87/checkout?card=99999303411

5. Patron Book Holds - https://terran-

testbox.gapines.org/eg/staff/circ/patron/87/holds

6. Register patron - https://terran-

testbox.gapines.org/eg/staff/circ/patron/register

7. Book check in - https://terran-

testbox.gapines.org/eg/staff/circ/checkin/checkin

Primary contact for the project: John Rempel – jrempel3@gatech.edu

https://terran-testbox.gapines.org/eg/staff/
https://terran-testbox.gapines.org/eg/staff/
https://terran-testbox.gapines.org/eg/staff/circ/patron/search
https://terran-testbox.gapines.org/eg/staff/circ/patron/search
https://terran-testbox.gapines.org/eg/staff/circ/patron/87/checkout?card=99999303411
https://terran-testbox.gapines.org/eg/staff/circ/patron/87/checkout?card=99999303411
https://terran-testbox.gapines.org/eg/staff/circ/patron/87/holds
https://terran-testbox.gapines.org/eg/staff/circ/patron/87/holds
https://terran-testbox.gapines.org/eg/staff/circ/patron/register
https://terran-testbox.gapines.org/eg/staff/circ/patron/register
https://terran-testbox.gapines.org/eg/staff/circ/checkin/checkin
https://terran-testbox.gapines.org/eg/staff/circ/checkin/checkin

Center for Inclusive Design and Innovation

 Confidential © CIDI 6

Executive Summary
This accessibility report is an in-depth evaluation of a predetermined sampling of

URLs of the Evergreen application that documents the types of accessibility issues and

conformance violations in accordance with the W3C's international set of guidelines

known as Web Content Accessibility Guidelines (WCAG 2.1 Level AA). For additional

information related to WCAG, visit: Web Content Accessibility Guidelines (WCAG)

Overview. Recently updated Section 508 standards, also known as ICT Refresh, is a

federally recognized set of standards that has been harmonized with WCAG 2.1 (Level

A and AA). For additional information on the ICT Refresh, visit: About the ICT Refresh.

It should also be noted that with recent cases in which the Department of Justice

intervened, conformance to WCAG 2.1 (Level A and AA) were required when

applicable. For additional information, visit: ADA.gov

The Evergreen application is fairly accessible. Most of the issues found were minor.

The most prevalent issue found was the lack of accessible labels for the various form

fields within the site. Another noticeable issue was the sound made when users

activate the submit button for certain forms. This sound is not expected by users and

can take them by surprise.

Many of the user impacts are highlighted in the video demonstration. Additional

information is also available in the “Detailed Findings & Recommendations” section

below and the accompanying spreadsheet. Resources listed for follow-up study are

also provided in the “Results and Recommended Actions” section below. Feedback on

this evaluation is welcome.

Video Demonstration of the Georgia Evergreen Application
A brief mp4 video has been created of the Georgia PINES website that gives a basic

understanding of how people with disabilities access the website, and highlights some

of the barriers that may be encountered. The video is to be considered a

supplemental component to the Georgia PINES web accessibility review and

accompanying Excel spreadsheet, which provides additional detail and remediation

solutions. The video in its current state does not contain captions, but AMAC would be

happy to provide captions at no additional cost upon request if anyone on your team

would benefit. Because the current video does not contain captions, we request that

it not be posted online or shared publicly. To access the video, visit: Georgia

Evegreen Application Accessibility Video.

Overall Conformance
The website meets partial conformance with WCAG 2.1 Level A and AA Success
Criteria (SC). The Success Criteria listed here pass conformance for the pages
reviewed. Conformance with an SC may be because no feature was identified to test
(Conforms – not applicable), while the other SCs pass testing (Pass – Commendable).
This conformance is for the period of time when the review was performed and does
not apply to future releases of the website.

https://www.w3.org/WAI/intro/wcag
https://www.w3.org/WAI/intro/wcag
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh
http://www.ada.gov/
https://www.dropbox.com/s/fguoxb2tm7v0ofv/GA%20PINES%20Application%20MP4%20Video.mp4?dl=0
https://www.dropbox.com/s/fguoxb2tm7v0ofv/GA%20PINES%20Application%20MP4%20Video.mp4?dl=0

Center for Inclusive Design and Innovation

 Confidential © CIDI 7

WCAG 2.1 Success
Criteria

Notes

1.2.1 A: Audio-only and
Video-only (Prerecorded)

Conforms – Not Applicable

1.2.2 A: Captions
(Prerecorded)

Conforms – Not Applicable

1.2.3 A: Audio Description
or Media Alternative
(Prerecorded)

Conforms – Not Applicable

1.2.4 AA: Captions (Live) Conforms – not applicable
1.2.5 AA: Audio Description
(Prerecorded)

Conforms – not applicable

1.3.3 A: Sensory
Characteristics

Conforms – not applicable

1.3.4 AA: Orientation PASS - Commendable
1.4.2 A: Audio Control Conforms – not applicable
1.4.4 AA: Resize text PASS – Commendable
1.4.10 AA: Reflow PASS – Commendable
1.4.11 AA: Non-text
Contrast

PASS – Commendable

1.4.12 AA: Text Spacing PASS – Commendable
1.4.13 AA: Content on
Hover or Focus

PASS – Commendable

2.1.4 A: Character Key
Shortcuts

Conforms – not applicable

2.2.1 A: Timing Adjustable Conforms – not applicable
2.2.2 A: Pause, Stop, Hide Conforms – not applicable
2.3.1 A: Three Flashes or
Below Threshold

Conforms – not applicable

2.4.5 AA: Multiple Ways PASS - Commendable
2.5.1 A: Pointer Gestures PASS - Commendable
2.5.2 A: Pointer
Cancellation

PASS - Commendable

2.5.4 A: Motion Actuation Conforms – not applicable
3.1.1 A: Language of Page PASS - Commendable
3.1.2 AA: Language of Parts PASS - Commendable
3.2.1 A: On Focus PASS - Commendable
3.2.2 A: On Input PASS - Commendable
3.2.3 AA: Consistent
Navigation

PASS – Commendable

3.2.4 AA: Consistent
Identification

PASS - Commendable

3.3.2 A: Labels or
Instructions

PASS - Commendable

3.3.3 AA: Error Suggestion PASS - Commendable
3.3.4 AA: Error Prevention
(Legal, Financial, Data)

PASS - Commendable

https://www.w3.org/WAI/WCAG20/quickref/#media-equiv-av-only-alt
https://www.w3.org/WAI/WCAG20/quickref/#media-equiv-av-only-alt
https://www.w3.org/WAI/WCAG20/quickref/#media-equiv-captions
https://www.w3.org/WAI/WCAG20/quickref/#media-equiv-captions
https://www.w3.org/WAI/WCAG20/quickref/#media-equiv-audio-desc
https://www.w3.org/WAI/WCAG20/quickref/#media-equiv-audio-desc
https://www.w3.org/WAI/WCAG20/quickref/#media-equiv-audio-desc
https://www.w3.org/WAI/WCAG20/quickref/#media-equiv-real-time-captions
https://www.w3.org/WAI/WCAG20/quickref/#media-equiv-audio-desc-only
https://www.w3.org/WAI/WCAG20/quickref/#media-equiv-audio-desc-only
https://www.w3.org/WAI/WCAG20/quickref/#content-structure-separation-understanding
https://www.w3.org/WAI/WCAG20/quickref/#content-structure-separation-understanding
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1#orientation
https://www.w3.org/WAI/WCAG20/quickref/#visual-audio-contrast-dis-audio
https://www.w3.org/WAI/WCAG20/quickref/#visual-audio-contrast-scale
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1#reflow
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1#non-text-contrast
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1#non-text-contrast
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1#character-key-shortcuts
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1#character-key-shortcuts
https://www.w3.org/WAI/WCAG20/quickref/#time-limits-required-behaviors
https://www.w3.org/WAI/WCAG20/quickref/#time-limits-pause
https://www.w3.org/WAI/WCAG20/quickref/#seizure-does-not-violate
https://www.w3.org/WAI/WCAG20/quickref/#seizure-does-not-violate
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-mult-loc
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1#pointer-gestures
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1#pointer-cancellation
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1#pointer-cancellation
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1#motion-actuation
https://www.w3.org/WAI/WCAG20/quickref/#meaning-doc-lang-id
https://www.w3.org/WAI/WCAG20/quickref/#meaning-other-lang-id
https://www.w3.org/WAI/WCAG20/quickref/#consistent-behavior-receive-focus
https://www.w3.org/WAI/WCAG20/quickref/#consistent-behavior-unpredictable-change
https://www.w3.org/WAI/WCAG20/quickref/#consistent-behavior-consistent-locations
https://www.w3.org/WAI/WCAG20/quickref/#consistent-behavior-consistent-locations
https://www.w3.org/WAI/WCAG20/quickref/#consistent-behavior-consistent-functionality
https://www.w3.org/WAI/WCAG20/quickref/#consistent-behavior-consistent-functionality
https://www.w3.org/WAI/WCAG20/quickref/#minimize-error-cues
https://www.w3.org/WAI/WCAG20/quickref/#minimize-error-cues
https://www.w3.org/WAI/WCAG20/quickref/#minimize-error-suggestions
https://www.w3.org/WAI/WCAG20/quickref/#minimize-error-reversible
https://www.w3.org/WAI/WCAG20/quickref/#minimize-error-reversible

Center for Inclusive Design and Innovation

 Confidential © CIDI 8

Remediation Needed
The table below is organized by the WCAG 2.0 A and AA Success Criteria where issues

have been identified that need remediation to conform to the criteria. The issues

include the impact to users on a scale defined in the legend.

Also included, is the estimated level of effort for remediation. The level of effort to

remediate outstanding accessibility issues is an estimation of the level of complexity,

cost and time involved with remediation based on the number of instances and a

general understanding of the implementation required.

The impact and level of effort are provided to assist with determining the priority for

issues to be remediated. Critical impact issues should be addressed first, and the

level of effort is helpful in sizing the task for sprint/task planning.

Legend:

1. WCAG 2.0 A and AA Success Criteria – The three part numbers (e.g. 1.1.1)
refer to the WCAG 2.0 checkpoints (http://www.w3.org/TR/WCAG20/).

2. Success Criteria Non-conformance – The specific violation(s) identified in the
web page or document.

3. Impact - The accessibility impact is an indication of the severity to people with
disabilities and the distribution of the issue(s) across the sampled pages.

 Critical - Points out the issues that will block access for a person with a
disability or would make the content very difficult to understand. The issue will
cause the page to fail compliance.

 High - Affected users will have major difficulties accessing components of the
site or application and may be unable to complete tasks independently. They
may be unable to complete forms; they may find content difficult to locate and
navigate to; they may be unable to access some content at all. If there are
enough barriers, users may abandon the site and not return. User experience
will be low, and users may need additional assistance or accommodation. The
issue may cause the page to fail compliance.

 Medium - Affected users will have moderate difficulties accessing components
of the site or application. They may have difficulties understanding site
content, navigating the site, and interacting with content; they may find the
site cumbersome and their usage slow; they may be unable to locate and use
some information. User experience will be low.

 Low - Affected users will have minor difficulties accessing components of the
site or application. They may find the site annoying; they may feel that they
are not the target audience for the site; they may have difficulties locating
some information or interacting with the site. User may become annoyed with
the site and be reluctant to return.

http://www.w3.org/TR/WCAG20/

Center for Inclusive Design and Innovation

 Confidential © CIDI 9

4. Level of Effort – Based on the reviewer's experience, the estimated effort that
would need to be exerted to remediate the issue throughout the documents.

Issue Summary by Success Criteria
WCAG 2.0 Success Criteria Non-conformance Impact Level of Effort
1.1.1 A: Non-
text Content

Alt text is provided for decorative
images.

High Low

1.3.1 A: Info
and
Relationships

There were several instances of elements
that do not have the correct semantic
markup. There were also instances of
form fields that did not have
programmatically associated labels.

Critical Low

1.3.2 A:
Meaningful
Sequence

On some of the elements, reading and tab
order is illogical.

Critical Low

1.4.1 A: Use of
Color

There is an instance of color being used
to convey information to users.

Critical Low

1.4.3 AA:
Contrast
(Minimum)

A few instances of insufficient color
contrast were found.

High Low

1.4.5 AA:
Images of Text

The alt text for the PINES logo is
inadequate.

Medium Low

2.1.1 A:
Keyboard
Access

A link was found on the patron
registration page that is unable to receive
keyboard focus.

High Low

2.1.2 A: No
Keyboard Trap

Form fields are causing minor keyboard
traps.

Medium Medium

2.4.1 A: Bypass
Blocks

The heading structure of the site could be
improved. The site is also missing a skip
to main content link.

High Low

2.4.2 A: Page
Titled

Each page’s title is read in a confusing
manner via screen readers.

Medium Low

2.4.3 A: Focus
Order

On some of the elements, reading and tab
order is illogical.

Critical Low

2.4.4 A: Link
Purpose (In
Context)

Link text of some links could be
improved.

High Low

2.4.6 AA:
Headings and
Labels

Various form fields are missing labels. Critical Low

2.4.7 AA:
Focus Visible

The links in the navigation bar lack visible
focus.

Critical Low

3.2.2 A: On
Input

Placeholder text is used as a label form a
few of the form fields on the site.

Critical Low

3.3.1 A: Error
Identification

There error identification method for the
login form is inadequate.

Critical Low

https://www.w3.org/WAI/WCAG20/quickref/#text-equiv-all
https://www.w3.org/WAI/WCAG20/quickref/#text-equiv-all
https://www.w3.org/WAI/WCAG20/quickref/#content-structure-separation-programmatic
https://www.w3.org/WAI/WCAG20/quickref/#content-structure-separation-programmatic
https://www.w3.org/WAI/WCAG20/quickref/#content-structure-separation-programmatic
https://www.w3.org/WAI/WCAG20/quickref/#content-structure-separation-sequence
https://www.w3.org/WAI/WCAG20/quickref/#content-structure-separation-sequence
https://www.w3.org/WAI/WCAG20/quickref/#content-structure-separation-sequence
https://www.w3.org/WAI/WCAG20/quickref/#visual-audio-contrast-without-color
https://www.w3.org/WAI/WCAG20/quickref/#visual-audio-contrast-without-color
https://www.w3.org/WAI/WCAG20/quickref/#visual-audio-contrast-contrast
https://www.w3.org/WAI/WCAG20/quickref/#visual-audio-contrast-contrast
https://www.w3.org/WAI/WCAG20/quickref/#visual-audio-contrast-contrast
https://www.w3.org/WAI/WCAG20/quickref/#visual-audio-contrast-text-presentation
https://www.w3.org/WAI/WCAG20/quickref/#visual-audio-contrast-text-presentation
https://www.w3.org/WAI/WCAG20/quickref/#keyboard-operation-keyboard-operable
https://www.w3.org/WAI/WCAG20/quickref/#keyboard-operation-keyboard-operable
https://www.w3.org/WAI/WCAG20/quickref/#keyboard-operation-trapping
https://www.w3.org/WAI/WCAG20/quickref/#keyboard-operation-trapping
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-skip
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-skip
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-title
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-title
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-focus-order
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-focus-order
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-refs
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-refs
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-refs
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-descriptive
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-descriptive
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-descriptive
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-focus-visible
https://www.w3.org/WAI/WCAG20/quickref/#navigation-mechanisms-focus-visible
https://www.w3.org/WAI/WCAG20/quickref/#consistent-behavior-unpredictable-change
https://www.w3.org/WAI/WCAG20/quickref/#consistent-behavior-unpredictable-change
https://www.w3.org/WAI/WCAG20/quickref/#minimize-error-identified
https://www.w3.org/WAI/WCAG20/quickref/#minimize-error-identified

Center for Inclusive Design and Innovation

 Confidential © CIDI 10

4.1.1 A:
Parsing

There were some parsing issues found
when running the source code through
W3C’s HTML Validator.

Medium Medium

4.1.2 A: Name,
Role, Value

Various name, role, and value issue were
found across the site.

Critical Low

4.1.3 AA:
Status
Messages

One status message was found on the
patron registration form.

High Low

Reviewer's Report
Detailed Feedback & Recommendations
The list below is organized by WCAG 2.1 A and AA Success Criteria. Each Success
Criteria contains an overall explanation of how an issue does not conform to the
criteria. A detailed example of an issue is provided along with recommendations for
remediation. Detailed test results have been captured on a page-by-page basis and
are provided in a separate Excel Spreadsheet.

Recommendations are informational as there may be other methods available to fix
the issues within the agency environment or that have been newly developed given
new technology and best practices. It is the intention of these findings to provide an
understanding of the accessibility issue and allow agencies and development teams
the freedom to remediate according to the technology, talent and imaginations
available. Meeting the intention of the Success Criteria can be innovative and move
ICT (Information and Communication Technology) toward better solutions that provide
the best user experience to all people.

1. WCAG 2.0 1.1.1 A: Appropriate use of alternative text

Applicable to:
Home Page

Impact:
[High]

Explanation:

Decorative

Redundant images or images used for spacing convey no information and should be

coded to be ignored by assistive technology. In HTML, set alt-text to null, or empty:

alt="" (no spaces).

Example: The link icons on the home page are missing alt text attributes.

Current Code:
<img src="https://terran-

testbox.gapines.org/images/portal/forward.png">

https://www.w3.org/WAI/WCAG20/quickref/#ensure-compat-parses
https://www.w3.org/WAI/WCAG20/quickref/#ensure-compat-parses
https://www.w3.org/WAI/WCAG20/quickref/#ensure-compat-rsv
https://www.w3.org/WAI/WCAG20/quickref/#ensure-compat-rsv
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1only¤tsidebar=%23col_overview#status-messages
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1only¤tsidebar=%23col_overview#status-messages
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.1only¤tsidebar=%23col_overview#status-messages

Center for Inclusive Design and Innovation

 Confidential © CIDI 11

Recommended Code:
<img src="https://terran-

testbox.gapines.org/images/portal/forward.png" alt="">

2. WCAG 2.0 1.3.1 A: Information and Relationships

Applicable to:
Register Patron Page

Impact:
[High]

Explanation:

Programmatic Labels

Assistive Technology relies on the programmatic association of form controls to labels

to accurately communicate labels when a form control gets focus.

Additional Resources:

W3C Tutorial Labels

Example: The form fields on the Register Patron page have explicit labels, but those

labels are not programmatically associated with the corresponding fields.

Current Code:
<label class="ng-binding">Barcode</label>

<input type="text" name="barcode" …>

Recommended Code:
<label class="ng-binding" for=”barcode”>Barcode</label>

<input type="text" name="barcode" id=”barcode”…>

3. WCAG 2.0 1.3.1 A: Information and Relationships

Applicable to:
GLOBAL

Impact:
[High]

Explanation:

Heading Structure

Headings are useful for all users and are essential for accessible webpages. For all

users, Headings semantically identify and group content. For screen reader users, one

of the most common navigation methods is to use the heading structure. Individuals

with attention or cognitive impairments benefit from having consistent and sectioned

information that is clearly identified. Headings make content easy to parse and

understand the intended meaning. For more information, visit: W3C-Headings

https://www.w3.org/WAI/tutorials/forms/labels/
https://www.w3.org/TR/WCAG20-TECHS/H42.html

Center for Inclusive Design and Innovation

 Confidential © CIDI 12

4. WCAG 2.0 1.3.1 A: Information and Relationships

Applicable to:
GLOBAL

Impact:
[Critical]

Explanation:

Data Tables

Data tables are a meaningful way to provide tabular data. Proper semantic markup

should be used to define data tables including the summary attribute and <th> with

scope attribute to define. Summary information and headers should be concise and

provide the purpose of the table or column.

Example: There are several tables, across the entirety of the site, that presented

visually as such, but do not contain table markup.

Recommendation:
To ensure that all elements are able to be accessed as intended,

provide the correct semantic markup. For elements that are presented

as tables, provide the correct markup so that they are able to be

accessed via screen reader and other assistive technology as intended.

5. WCAG 2.0 1.4.1 A: Use of Color

Applicable to:
Patron Page

Impact:
[Critical]

Explanation:
Color used to provide information must also have a non-color indicator that provides

the same information. For more information, visit: W3C-Use of Color

Example: On a patron's information summary, the color red is used to profile

information about a certain field. For instance, if the birth date is missing , the text is

colored red to indicate that this is an issue. Screen reader users will not be able to

decipher that this is an issue.

Screenshot:

https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-without-color.html

Center for Inclusive Design and Innovation

 Confidential © CIDI 13

Recommendation:
Ensure that when color differences are used to convey information, the information
conveyed by the color differences are also conveyed explicitly in text.

6. WCAG 2.0 1.4.3 AA: Color Contrast

Applicable to:
Register Patron

Check In

Impact:
[High]

Explanation

Text, including images of text, should have sufficient color contrast with the

background to make the text clearly visible to all users. When color contrast is low,

people with low vision or color impairment are unable to see the text clearly. Target

ratios are:

 Regular text a color contrast of 4.5:1 is the minimum ration.

 Large text a color contrast of 3:1 is the minimum ratio.

 Visible focus color with no additional non-color indicator a color contrast of 3:1

between the normal view and hover or focus view is the minimum contrast. IS

it recommended as a best practice to have a non-color indicator for links when

they receive focus.

 For more information, visit: W3C - Color Contrast Minimum

Contrast Ratio Screenshot Page

Contrast Ratio: 3.6:1

Contrast Ratio: 3.72:1

 Contrast Ratio: 3.1:1

Register Patron

Check In

https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html

Center for Inclusive Design and Innovation

 Confidential © CIDI 14

7. WCAG 2.0 1.4.5 AA: Images of Text

Applicable to:
Home page

Impact:
[Medium]

Explanation:
Text should be used in place of images of text where the technology can present the

visual presentation. Exceptions include logos. For more information visit W3C - Images

of Text

Example: The alt text for the PINES logo includes the word logo which could add

unnecessary redundancy for screen reader users.

Current Code:
<img src="/xul/server/skin/media/images/portal/logo.png" alt="PINES

Logo" style="height:80px;">

Recommended Code:
<img src="/xul/server/skin/media/images/portal/logo.png" alt="PINES"

style="height:80px;">

8. WCAG 2.0 2.1.1 A: Keyboard Access

Applicable to:
Patron Page

Impact:
[Medium]

Explanation:

Missing href on <a> element

The href attribute is needed on <a> elements to ensure keyboard users can navigate

to and activate the element.

Example: Several anchor elements are missing the href attributes.
Current Code:

<a ng-click="incrementHours()" ng-class="{disabled:

noIncrementHours()}" class="btn btn-link disabled" ng-

disabled="noIncrementHours()" tabindex="-1" disabled="disabled"><span

class="glyphicon glyphico...

Recommendation:
Those these links work and function intended for a standard keyboard,

this may not be the case for other assistive technologies. Ensure that

all elements of the site are accessible to all users.

9. WCAG 2.0 2.4.3 A: Focus Order

Applicable to:
Register Patron Page

https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-scale.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-scale.html

Center for Inclusive Design and Innovation

 Confidential © CIDI 15

Impact:
[Critical]

Explanation:
Keyboard focus should be visible and follow standard patterns: top to bottom, left to

right. For more information, visit: W3C-Focus Order

Example: When a user completes the patron registration form, the next logical step is

to submit or save their entry. Unfortunately, the focus moves from the last form field

to the very top of the page and causes users to navigate through the various page

elements before reaching the save/submit button.

Recommendation:
Provide a method for users to tab from the last form field to the Print, Save and Save & Clone
buttons.

10. WCAG 2.0 2.4.4 A: Link Purpose in Context

Applicable to:
Register Patron

Impact:
[High]

Explanation:
Link text or link text with programmatically determinable context needs to provide

the purpose or destination of the link. For more information, visit: W3C-Link purpose

in Context

Example: The required fields, suggested fields, and all fields link text should be

improved. The links act as filters for the content, but this could be lost on screen

reader users who might assume that the links would take them to a different page

that would explain or provide more information about required, suggested or all

fields.

Current Code:
<a href="" ng-class="{disabled : edit_passthru.vis_level == 2}" ng-

click="edit_passthru.vis_level=2">Required Fields

Recommended Code:
<a href="" ng-class="{disabled : edit_passthru.vis_level == 2}" ng-
click="edit_passthru.vis_level=2">Show Required Fields

11. WCAG 2.0 2.4.7 AA: Focus Visible - Focus States &

Indicators

Applicable to:
GLOBAL

https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-order.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-refs.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-refs.html

Center for Inclusive Design and Innovation

 Confidential © CIDI 16

Impact:
[Critical]

Explanation:
For anyone who relies on the keyboard to access web pages, visually determining the

component or section of the page that has the focus of attention is essential. Users

with attention limitations, short-term memory limitations, or limitations in executive

processes also benefit by being able to recognize visually where the focus is located

on a web page or application. For more information, visit: W3C-Focus Visible

Example: The navigation bar lack visible focus. The rest of the site has sufficient

visible focus indicators, but it could be improved.

Recommendation:
See spreadsheet for recommendation.

12. WCAG 2.0 3.3.1 A: Error Identification

Applicable to:
Login

Impact:
[Critical]

Explanation: If an input error is automatically detected, the item that

is in error is identified and the error is described to the user in text.

Example: The error message provided when a user enters incorrect login information

is inadequate. The message is located beneath the login form which could cause it to

be missed by keyboard only users or users who use screen magnification.

Also, if a user accidentally skips a form field, an error message is not provided to

make them aware of this mistake. This could cause users to grow confused or assume

that the submit button is broken.

Current Code:
Login

Failed

Recommended Code:
Provide adequate error messages so that all users are made aware of

any input mistakes that may be made.

See the following link for more information on accessible error

messages: https://www.w3.org/WAI/WCAG21/Understanding/error-

identification.html

http://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-visible.html

Center for Inclusive Design and Innovation

 Confidential © CIDI 17

13. WCAG 2.0 4.1.1 A: Validate HTML

Applicable to:
GLOBAL

Impact:
[Medium]

Explanation:
Inspect website for validation errors with non-standard HTML. For reference see:

https://validator.w3.org/

Appendix A: Commonly Used Code

Snippets

Links that open new windows, dialogs or PDFs
Give users advanced warning when before automatically opening a new window,

dialog or PDF by providing a warning that allows the user to decide it they want to

leave the current window, and the warning will help them find their way back if they

do decide they would like to go to the new window. It will help them understand that

the "back" button will not work and that they wish to return to the last window they

had open, in order to find their previous location.

Webcredible (opens new window)<img

src="http://www.webcredible.com/i/new-win-icon.gif" alt="Opens new

window">

Table 1: The name or label that describes a control can include the warning about opening in a new window.

All about AMAC (Opens new window)

All about AMAC

(Opens new window)

Table 2: Using CSS to provide a warning before opening a new window

<html>

<head>

<title>Pop-Up Warning</title>

<style type="text/css">

body {

 margin-left:2em;

https://validator.w3.org/
http://www.amacusg.org/

Center for Inclusive Design and Innovation

 Confidential © CIDI 18

 margin-right:2em;

 }

 :focus { outline: 0; }

 a.info {

 position:relative;

 z-index:24;

 background-color:#ccc;

 color:#000;

 text-decoration:none

 }

 a.info:hover, a.info:focus, a.info:active

{

 z-index:25;

 background-color:#ff0

 }

 a.info span {

 position: absolute;

 left: -9000px;

 width: 0;

 overflow: hidden;

 }

 a.info:hover span, a.info:focus span,

a.info:active

span {

 display:block;

 position:absolute;

 top:1em; left:1em; width:12em;

 border:1px solid #0cf;

 background-color:#cff;

 color:#000;

 text-align: center

 }

 div.example {

 margin-left: 5em;

 }

 </style>

 </head>

 <body>

 <h1>Pop-Up Warning</h1>

 <p> This is an example of an <a

class="info"

 href="popup_advisory_technique.html"

target="_blank">

 External linkOpens

a new

 window

Center for Inclusive Design and Innovation

 Confidential © CIDI 19

 </p>

 </body>

</html>

A working example of Using CSS to provide a warning before opening a new window is available.

Hiding Content from both visual and screen reader

users
In some cases, it is necessary to hide content from either visual users, or screen

reader users. This would apply to content "expandable/collapsible" content, and other

similar situations. To hide content from both visual and screen reader users, use the

CSS instructions display:none; and visibility:hidden;

HTML and WAI-ARIA Landmarks
Defining all content within landmark regions is a good practice and provides a method

for AT users to navigate quickly. To better understand landmarks in relation to HTML5

and WAI-ARIA, visit: WAI-ARIA Overview. Follow WAI-ARIA Authoring Practices for

Landmark Regions including providing an accessible name when defining multiple

landmarks of the same type such as navigation. The best practice is to define Banner,

Main and Contentinfo once per page.

New HTML 5 elements and corresponding ARIA roles:

HTML 5 WAI-ARIA Role
 <header> role="banner"

 <nav> role="navigation"

 <main> role="main"

 <footer> role="contentinfo"

 <aside> role="complementary"

 none role="search"

 <form> role="form"

<section> role="region" provide accessible name

using aria-labelledby or aria-label

The most useful of these for most websites are header/banner,

nav/navigation, main, and footer/contentinfo. The others are useful as
well, but are not as widely applicable across most websites.

Add Skip Navigation
Provide a method to skip navigation elements for keyboard users. Large header

menus can be tedious and unnecessary when browsing multiple pages on the same

website. For additional information, visit: W3C-Adding a link at the top of each page

that goes directly to the main content area

https://www.w3.org/WAI/WCAG20/Techniques/working-examples/G201/new-window.html
https://www.w3.org/WAI/intro/aria
https://www.w3.org/TR/wai-aria-practices-1.1/#aria_landmark
https://www.w3.org/TR/wai-aria-practices-1.1/#aria_landmark
https://www.w3.org/TR/WCAG20-TECHS/G1.html
https://www.w3.org/TR/WCAG20-TECHS/G1.html

Center for Inclusive Design and Innovation

 Confidential © CIDI 20

Content for screen reader users but not sighted users
In some cases, extra content can be provided for the benefit of screen reader users,

which is not useful for visual browsers. Examples include headings to identify parts of

the page, where the visual design makes these divisions clear already. It is desirable

to include such information without changing the visual layout of the site. However,

most assistive technologies ignore content that is hidden using the technique given

above. For content that should be announced to assistive technology users, but not

appear visually, use the following CSS class:

CSS used to hide content visually, but make it available to assistive technology users

.visually-hidden

{

 position: absolute;

 clip: rect(1px 1px 1px 1px); /* for Internet Explorer */

 clip: rect(1px, 1px, 1px, 1px);

 padding: 0;

 border: 0;

 height: 1px;

 width: 1px;

 overflow: hidden;

}

HTML demonstrating use of the class

<p class="visually-hidden">This paragraph is present in the DOM

and accessible to assistive technologies, but is visually

hidden.</p>

OPTGROUP to group OPTION elements inside a SELECT
Group information in a select dropdown using optgroup. For more information, visit:

W3C Optgroup

Tab Panel
WAI-ARIA-enabled tabbed interface has three components: the tablist, which

contains a collection of tabs, each of which is a control for loading its associated

content tabpanel. Depending on the size of the window and length of tab labels, you

can generally create a tab view that contains between two and eight tabs. Tablist

strips should never wrap to multiple rows or insert horizontal scrollers for the tabs

because of the poor visual connection between the tab and the pane visually

displayed below. Additionally, tooltips should not be used directly on the tabs as this

causes screen readers to enter Browse Mode when Application Mode is needed to

navigate and announce a tab’s state and properties.

If a tabpanel does not contain regular text content, there is nothing to set focus to

using the Tab key and exits the tab component. If the regular text content includes

https://www.w3.org/TR/WCAG20-TECHS/H85.html

Center for Inclusive Design and Innovation

 Confidential © CIDI 21

one or more links, then pressing the Tab key will set focus to the first link, skipping

over any text content that might come before it. Unless the screen reader uses

Browse Mode with the Virtual Cursor on, it remains in Application Mode, and cannot

read any regular text content using the normal reading commands. If the tabpanel

had focus, the user could manually turn the Virtual Cursor back on.

The tabpanel itself is set with tabindex="0" to place it in the Tab order. In this case,

screen readers automatically exit Application Mode and enter Browse Mode in both

when using the Tab key to move focus to the tabpanel. This, then, allows these

screen readers easy access to the tabpanel content through the normal reading

commands. It is worth noting that setting focus to a non-form or non-application

element can accomplish the same thing in some instances so this suggests a possible

workaround, namely including such an element (for example, a heading) in the Tab

order at the beginning of the tabpanel content. The main heading in each tabpanel

has tabindex="0" to place it in the Tab order. This allows the use of the Tab key to

move focus from the active tab control into the tabpanel’ s regular text content. This

causes screen readers to automatically exit Application Mode and permit the use of

the screen reader’s normal reading commands for accessing the tabpanel content.

1. Add the role of tablist to the ul element, indicating that the children are

tabs.

2. Add the role presentation to each of the li elements, indicating that the

screen reader should ignore the list items themselves.

3. Add role of tab to each link, re-mapping their roles to the intended screen-

reader recognizable element type.

4. Add aria-selected to each of the tabs. When you switch tabs in your JS code,

update these to reflect the new state of each. Only one may be selectable at

any given time, so the values of two should be false, and only one should be

true.

5. Add aria-controls to each tab, indicating which panel the tab references.

6. Add a role of tabpanel to each of the div containers and include tabindex="0".

7. Add aria-labelledby referencing the actual tab’s name given to the anchor

elements by the inner text above as labels for the panels.

<div class="tabs3 tabstl">

<li role="presentation" tabindex="-1" aria-selected="false" aria-

controls="tabs-1">

Double Header

Section 1

<li role="presentation" tabindex="-1" aria-selected="false" aria-

controls="tabs-2">

Double Header

Section 2

Center for Inclusive Design and Innovation

 Confidential © CIDI 22

<li role="presentation" tabindex="-1" aria-selected="true" aria-

controls="tabs-3"><a href="#tabs-3" role="tab" tabindex="-1" id="ui-

id-10">

Double Header

Section 3

<div id="tabs-1" tabindex="0" role="tabpanel" aria-labelledby="ui-id-

8">

<p>Content for Tab 1. </p>

<p>This is the content area of tabpanel 1. </p>

</div><div id="tabs-2" tabindex="0" role="tabpanel" aria-

labelledby="ui-id-9"><p>Content for Tab Two.</p><p>This is the content

area of tabpanel 2. </p></div><div id="tabs-3" tabindex="0"

role="tabpanel" aria-labelledby="ui-id-10"><p>Content for Tab

Three.</p><p>This is the content area of tabpanel 3. .

</p></div></div>

Lastly, each tabpanel needs to be addressed by adding id="ui-id-8", role tabpanel,

tabindex="0" and aria-labelledby or use aria-label to call the link text of the tablist

above.

There are 3-possibilities to set the initially selected tab:

1. active option (highest priority)

2. url fragment identifier matching a tab href's fragment identifier:
href="#fragment-identifier"

3. The ui-tabs-active class attribute is already specified in HTML source:

<li class="ui-tabs-active"> (lowest priority)

It is possible to initialize an empty tab set and add tabs thereafter.

1. After collapsing the active tab, it cannot be activated a second time unless

the collapsible option is set to true.

2. The type of tab (in-page vs. Ajax) is determined automatically from the

href attribute of the contained anchor elements.

3. Restructuring of the 's listitem(s) is required.

a) Add the role presentation to each of the li elements, indicating that the

screen reader should ignore the list items themselves.

b) Move role of tab to each link, re-mapping their roles to the anchor as

the intended screen-reader recognizable element type.

c) Move both aria-selected and aria-controls from each of the 's re-

mapping these properties to the anchor.

Center for Inclusive Design and Innovation

 Confidential © CIDI 23

Note: It is important to remove all tabindex attributes with a value higher than "0".

Example:
<ul id="tabs" role="tablist">

<li role="presentation" tabindex=”-1”><a id="tab1" href="#"

onclick="showTab(1);" role="tab" aria-controls="panel1" aria-

selected="true">Tab 1

<li role="presentation" tabindex=”-1”><a id="tab2" href="#"

onclick="showTab(2);" role="tab" aria-controls="panel2" aria-

selected="false">Tab 2

<li role="presentation" tabindex=”-1”><a id="tab3" href="#"

onclick="showTab(3);" role="tab" aria-controls="panel3" aria-

selected="false">Tab 3

...

<div id="panel1" role="tabpanel" aria-labelledby="tab1">

...

</div>

<div id="panel2" role="tabpanel" aria-labelledby="tab2">

...

</div>

<div id="panel3" role="tabpanel" aria-labelledby="tab3">

...

</div>

Keyboard
When focus is on a tab:

 UP/LEFT - Move focus to the previous tab. If on first tab, moves focus to last

tab. Activate focused tab after a short delay.

 DOWN/RIGHT - Move focus to the next tab. If on last tab, moves focus to first

tab. Activate focused tab after a short delay.

 HOME - Move focus to the first tab. Activate focused tab after a short delay.

 END - Move focus to the last tab. Activate focused tab after a short delay.

 SPACE - Activate panel associated with focused tab.

 ENTER - Activate or toggle panel associated with focused tab.

 ALT+PAGE UP - Move focus to the previous tab and immediately activate.

 ALT+PAGE DOWN - Move focus to the next tab and immediately activate.

When focus is in a panel:

 CTRL+UP - Move focus to associated tab.
 ALT+PAGE UP - Move focus to the previous tab and immediately activate.
 ALT+PAGE DOWN - Move focus to the next tab and immediately activate.

Center for Inclusive Design and Innovation

 Confidential © CIDI 24

Accessibility
Follows WAI-ARIA best practices with the following exceptions:

 Arrow keys do not immediately activate panels. This allows users to navigate
tabs without activating them, which may be important for remote tabs.

 Updated the aria-selected state immediately so that assistive technology

solutions announce the tab as selected, even though there is a delay in
activating it.

 We implement ALT+PAGE UP/DOWN instead of CTRL+PAGE UP/DOWN because of
interference with browser shortcuts, as mentioned in the best practices.

 Also works when a tab has focus. This allows consistent navigation regardless of

whether focus is on a tab or in a tabpanel.

 Tabs and panels have aria-labelledby pointing to the main anchor in the tab.
This allows additional controls, such as buttons, added to the tab without
affecting the label. The main tab has a role of presentation.

 Ajax tabs should have aria-live=polite on the content panel. When the

activated tab's the content is loading aria-busy is set to true; after the content
loads, then we'll remove aria-busy.

 Add aria-controls on the tab’s anchor pointing at the associated panels. This
allows AT to announce the relationship. For example, JAWS implements a
feature where you can jump from the tab to the panel because of the aria-
controls relationship.

 As the user navigates with the arrow keys when the tab first gains focus, since
the panel remains hidden this is not announced because we use delayed
activation.

Navigating through the tabs should not immediately activate the panels; there needs

to be a short delay so that users can navigate through the tabs without activating

each tab along the way.

Navigating while holding CTRL, should prevent the automatic activation. This makes it

possible for users of assistive technologies such as screen readers, to have as much

time as they need while navigating without activating each tab.

ALT+PAGE UP and ALT+PAGE DOWN will move focus to the previous or next tab,

respectively, and immediately activate the tab (this works regardless of whether

focus is on the tabs or in a panel). When focus is in a tab panel, CTRL+UP will move

focus to the associated tab.

Tables
There are two distinct types of tables frequently used on web pages: data tables and

layout tables. Use data tables when row and column headers provide contextual

information within the table. In the past, we commonly used, layout tables to

overcome limitations in visual presentation and layout using HTML. With the more

common use of cascading style sheets (CSS) for general layout purposes, layout tables

Center for Inclusive Design and Innovation

 Confidential © CIDI 25

are less frequently used. For a user who visually accesses a web page, most of the

time it will be irrelevant whether a layout table or CSS is being used or not. Most

screen reading programs, however, will indicate whether a table exists, along with

the exact number of columns and rows of the layout table. For users who are blind,

using too many layout tables for information can cause confusion and information

overload, not to mention weighting down your web pages significantly. Using CSS

accomplishes this just as easily. For more information, visit: Info and Relationships:

USC 1.3.1

The WCAG 2.0 Guideline 1.3.1 for Info and Relationships recommends:
 Tables used for tabular data.
 Headings used to associate data cells with headers.
 Data table captions and summaries used where appropriate.

In HTML, this means that a properly coded, accessible table containing tabular data would look
similar to the following table:

<table summary="Phone Contact List">

<thead>

<tr>

<th>Name</th>

<th>Phone</th>

</tr>

</thead>

<tbody>

<tr>

<td>John Doe</td>

<td>404-555-1212</td>

<tr>

<td>Jane Zoe</td>

<td>404-555-2121</td>

</tr>

</tbody>

</table>

The <thead> tag contains the header row that defines the columns for the table; these column
labels are contained within the <th> tag. The data for the table is contained within the <tbody>
tag and the cells contained with the <td> tag. The summary attribute for the <table> tag
describes the content or purpose of the table. The presence of a <thead> tag with column
labels contained within <th> tags aids a screen reader user in table orientation.

Data Tables
Tables used to display data in a grid. To make tables accessible, header cells must be

marked up with <th>, and data cells with <td>. Explicit associations needed for more

complex tables, use scope, id, and headers attributes. For more information, visit:

Info and Relationships: USC 1.3.1

Layout Tables
Using tables to dictate the layout can keep pages from rendering and re-flowing

properly. This is particularly true on pages, which use very complex layouts.

http://www.w3.org/TR/UNDERSTANDING-WCAG20/content-structure-separation-programmatic.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/content-structure-separation-programmatic.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/content-structure-separation-programmatic.html

Center for Inclusive Design and Innovation

 Confidential © CIDI 26

Whenever possible, developers should utilize stylesheet markup to define the layout

of the page instead of tables.

 Ensure absolute sizing in tables is avoided

 Ensure layout tables do not contain structural markup

 Ensure layout tables indicate their use for presentation purposes

Ensure layout tables linearize properly

Add WAI-ARIA role="presentation" to prevent screen readers from announcing table

structure.

Scalable Font and Element Widths (Sizes)
Affects: All visual users, especially screen magnification, mobile, & other viewports.

EM and REM
Traditionally web design has used Pixel (px) sizes for font-sizes and layout purposes.

While this worked well when computer monitors were very standard in sizes and

resolutions, this is no longer the case. Relative units are a commonly used method to

display scalable font on multiple viewport sizes. EMs scale according to the font-size

of their parent elements, REMs (root EM) scale according to the root (body) element

font-size.

Approaches & Responsive Design
There are many approaches to properly addressing issues related to layout and sizing.

Ultimately the most robust method is a full responsive design approach with media

queries for viewport sizes. This, however, is the most time-consuming method and

would only be appropriate for a redesign, not a remediation. There are a few other

approaches that are effective for improving font and layout resizing.

Setting <body> font-size to =”62.5%”
Setting the font-size to 62.5% in the body element is a common and easy approach to

modifying pixel widths. By setting the font-size in the body element, this attribute is

then inherited throughout every other element. Changing the font-size to this value

makes the math of converting px to em/rem very easy. 14px at 100% == 1.4 em/rem

at 62.5%. This is a very human readable method for converting sizes. An effective

combination is to use EMs for “margin, padding, width, height, and line-height” and

REM for most other PX values, specifically “font-size.” There are other approaches,

such as setting the body font-size in the body to a pixel value then scaling based on

that, that may work better for your purposes. For more information, visit: Font size:

the font size property

https://www.w3.org/TR/css-fonts-3/#font-size-prop
https://www.w3.org/TR/css-fonts-3/#font-size-prop

Center for Inclusive Design and Innovation

 Confidential © CIDI 27

Using button elements without the default formatting
Button elements are often avoided as often their default appearance does not meet

design goals. However, button elements are what we call "natively active elements".

This means that you can use onClick with these elements and keyboard access will

work automatically. If instead you start with, say, a div element, additional coding is

needed to implement keyboard access.

The CSS below shows how to remove aspects of default browser formatting for

buttons. The comments explain what each line does, so that you can choose just what

you need for your design.

CSS used to clear default formatting

button.clearformatting {

 /* remove browser-provided 3d edge effect */

 border: 0;

 /* remove extra spacing, and animated effect */

 padding: 0;

 /* remove color assigned by browser */

 background: transparent;

 /* add any formatting you like */

 background: url('button_texture.gif') repeat

}

Hiding and showing content with JavaScript DOM

Coding
When changing the page using JavaScript, a common mistake is to add a newly

created element to the end of the document object model (to the end of the Web

page) even if that is not a logical location for the new element. Often, then CSS is

used to move the item to a logical location visually. However, even with the CSS, to

the screen reader user, that element is still at the bottom of the page.

This is code that allows you to place your new element anywhere within the

Document Object Model, so that you can choose the best location for all users.

Placing a new element before another element

Center for Inclusive Design and Innovation

 Confidential © CIDI 28

In this example, a new paragraph is created and is placed just before an
ordered list with id L:

/* Create paragraph */

var newP = document.createElement("p");

var PText = document.createTextNode("This list will help with the

questions you missed!");

newP.appendChild(PText);

/* Get existing ordered list */

var existingL = document.getElementById("L");

/* Get parent of existing ordered list */

var parentObj = existingL.parentNode

/* Place new paragraph inside the parent of the ordered list,

just before the ordered list */

parentObj.insertBefore(newP, existingL);

Placing a new element after another element

JavaScript doesn't offer a command for insert after, but there's a reliable
way to do this. In this example, a new paragraph is created and is placed just

after an ordered list with id L:

/* Create paragraph */

var newP = document.createElement("p");

var PText = document.createTextNode("Good job with the list; now

take a break!");

newP.appendChild(PText);

/* Get existing ordered list */

var existingL = document.getElementById("L");

/* Get parent of existing ordered list */

var parentObj = existingL.parentNode

Center for Inclusive Design and Innovation

 Confidential © CIDI 29

/* Get the next sibling of the existing ordered list */

var nextS = existingL.nextSibling

/* don't worry if there's a chance nextS will be null - see below

*/

/* Place new paragraph inside the parent of the ordered list,

just after the ordered list */

parentObj.insertBefore(newP, nextS);

/* if nextS is null, insertBefore will place newP at the end of

parentObj,

which would be just after the existing ordered list, in that case.

*/

/* Create paragraph */

var newP = document.createElement("p");

newP.appendChild(document.createTextNode("Good job with the list;

now take a break!");

/* Get existing ordered list */

var existingL = document.getElementById("L");

/* Add to page after list */

existingL.parentNode.insertBefore(newP,existingL.nextSibling);

Making a new element the first child of another element

In this example, a new list item is created and becomes the first

list item in the ordered list with id L:

/* Create new list item */

var newLi = document.createElement("li");

var PText = document.createTextNode("Start by making

sure you have a good place to study.");

newLi.appendChild(PText);

/* Get existing ordered list */

var existingL = document.getElementById("L");

/* Place new list item inside the ordered list,

just before the first child of the ordered list */

existingL.insertBefore(newLi,existingL.firstChild);

Center for Inclusive Design and Innovation

 Confidential © CIDI 30

Making a new element the last child of another element

In this example, a new list item is created and becomes the last list item in

the ordered list with id L:
/* Create new list item */

var newLi = document.createElement("li");

var PText = document.createTextNode("Double check

your work.");

newLi.appendChild(PText);

/* Get existing ordered list */

var existingL = document.getElementById("L");

/* Place new list item inside the ordered list,

as the last item in the ordered list */

existingL.appendChild(newLi);

ARIA, Dynamic Content, alerts, and feedback
Provide user feedback using ARIA for states and live regions on webpages. For more

information, visit: Live Region Attributes and aria-busy (state)

ARIA and Dynamic Content
WAI-ARIA provides a framework for adding attributes to identify features for user

interaction, how they relate to each other, and their current state. WAI-ARIA

describes new navigation techniques to mark regions and common Web structures as

menus, primary content, secondary content, banner information, and other types of

Web structures. Follow WAI-ARIA Authoring Practices.

 Avoid forced focus changes that are not user-initiated

 Ensure auto-updating dynamic content can be paused, stopped, or hidden

 Ensure content updates define focus updates appropriately

 Ensure that dynamic content is rendered in-line with the controls that change

it

 Ensure that textual equivalent information is updated appropriately when an

element's state changes

 Inform assistive technologies of changes in content

 Provide an accessible alert method for content changes that occur without

explicit user knowledge

WAI-ARIA
Follow WAI-ARIA Authoring Practices.

 Ensure appropriate use of ARIA roles, states, and properties are provided

 Ensure ARIA regions, landmarks and HTML sections are identifiable

 Ensure ARIA roles, states, and properties are valid

https://www.w3.org/TR/wai-aria-1.1/#attrs_liveregions
https://www.w3.org/TR/wai-aria/states_and_properties#aria-busy
https://www.w3.org/TR/wai-aria-practices-1.1/
https://www.w3.org/TR/wai-aria-practices-1.1/

Center for Inclusive Design and Innovation

 Confidential © CIDI 31

 Ensure elements that use ARIA provide non-ARIA fallback accessible content

when not accessibility supported

Live Regions
 Ensure live regions define atomic-ness unless they are not atomic

 Ensure live regions define controlling elements when present

 Ensure non-uniformly updated live regions use the ARIA busy attribute

 Ensure relevant changes for live regions are explicitly defined if the change

is not text or a node addition

 Ensure live regions for dynamically changing content are provided

 Provide explicit labels for live regions

 Ensure long descriptions for complex live regions are provided

ARIA Menus
When implementing WAI-ARIA menus and sub-menus be sure to follow the W3C best

practices for menus. Another resource for menus is the W3C Menus Tutorial. The

Stack Overflow Flyout Menu Summary is a concise outline of the requirements for

flyout/sub-menus. Follow WAI-ARIA Authoring Practices for Menu, Menu bar and Menu

button.

Stack Overflow Flyout Menu Summary

HTML structure:
<div> <!-- Outer wrapper -->

 <!-- Main navigation bar container -->

 <!-- First-level item without submenu -->

 <a> <!-- Destination URL -->

 <!-- First-level item with submenu -->

 <a> <!-- Destination URL -->

 <!-- Second-level menu container -->

 <!-- Second-level item -->

 <a>

 <!-- Destination URL -->

</div>

Roles:

 role=”navigation” for outer wrapper <div>

 role="menubar" for navigation bar container

 role="menu" for second-level containers

 role="presentation" for first- and second-level menu items (they are not

needed in the exposed accessible menubar structure)

https://www.w3.org/TR/wai-aria-practices-1.1/#menu
https://www.w3.org/TR/wai-aria-practices-1.1/#menu
https://www.w3.org/WAI/tutorials/menus/
https://www.w3.org/TR/wai-aria-practices-1.1/

Center for Inclusive Design and Innovation

 Confidential © CIDI 32

 role="menuitem" for first- and second-level <a> menu items

Properties:

 aria-haspopup="true" for first-level <a> menu items having a submenu

 aria-labelledby="ID of previous <a> menu item" for second-level containers

States:

 aria-selected="true" on currently visited first- or second-level <a> item; aria-

selected="false" on the other <a> items. That is to enforce the concept

“selected <==> current page”

 aria-expanded="true/false" for second-level containers

 aria-hidden="true/false" for second-level containers

 aria-activedescendant="" for main navigation bar container. This is an

alternative to working with tabindex

 tabindex=0 on currently visited <a> item; tabindex=-1 on the other <a> items.

That is in order to first focus on the current page when tabbing to the

navigation bar. It is an alternative to working with aria-activedescendant

Keyboard:
1. Tab: Move focus in/out of the menu from other points in the web application.

2. Shift+Tab: Move focus in/out of the menu from other points in the web

application, in the reversed order.

3. Right arrow: Next navigation bar item

4. Left arrow: Previous navigation bar item

5. Enter: Activate currently focused item (i.e. navigate to corresponding URL)

6. Space: Activate currently focused item (i.e. navigate to corresponding URL)

Appendix B: Screenshots
URLs include the following:

1. Login – https://terran-testbox.gapines.org/eg/staff/login

https://terran-testbox.gapines.org/eg/staff/login

Center for Inclusive Design and Innovation

 Confidential © CIDI 33

2. Home – https://terran-testbox.gapines.org/eg/staff/

3. Patron Search - https://terran-

testbox.gapines.org/eg/staff/circ/patron/search

https://terran-testbox.gapines.org/eg/staff/
https://terran-testbox.gapines.org/eg/staff/circ/patron/search
https://terran-testbox.gapines.org/eg/staff/circ/patron/search

Center for Inclusive Design and Innovation

 Confidential © CIDI 34

4. Patron Book Check Out - https://terran-

testbox.gapines.org/eg/staff/circ/patron/87/checkout?card=99999303411

5. Patron Book Holds - https://terran-

testbox.gapines.org/eg/staff/circ/patron/87/holds

https://terran-testbox.gapines.org/eg/staff/circ/patron/87/checkout?card=99999303411
https://terran-testbox.gapines.org/eg/staff/circ/patron/87/checkout?card=99999303411
https://terran-testbox.gapines.org/eg/staff/circ/patron/87/holds
https://terran-testbox.gapines.org/eg/staff/circ/patron/87/holds

Center for Inclusive Design and Innovation

 Confidential © CIDI 35

6. Register patron - https://terran-

testbox.gapines.org/eg/staff/circ/patron/register

7. Book check in - https://terran-

testbox.gapines.org/eg/staff/circ/checkin/checkin

https://terran-testbox.gapines.org/eg/staff/circ/patron/register
https://terran-testbox.gapines.org/eg/staff/circ/patron/register
https://terran-testbox.gapines.org/eg/staff/circ/checkin/checkin
https://terran-testbox.gapines.org/eg/staff/circ/checkin/checkin

Center for Inclusive Design and Innovation

 Confidential © CIDI 36

Appendix C: Useful Resources
W3C’s Web Accessibility Initiative (WAI)

 Web Content Accessibility Guidelines 2.0 (WCAG)
 How to Meet WCAG 2.0 (Quick Reference)

 Accessible Rich Internet Applications (WAI-ARIA) Suite Overview

 WAI-ARIA 1.0 Authoring Practices

 WAI-ARIA 1.0 | The Roles Model

U.S. Federal Government
Section 508 Refresh Guidelines

PDF
Adobe’s Accessibility Resource Center for PDFs and Flash
Adobe TV | Accessibility @ Adobe tutorials, demos and techniques

Flash
Adobe | Flash Accessibility site

http://www.w3.org/WAI/intro/wcag.php
http://www.w3.org/WAI/WCAG20/quickref/
http://www.w3.org/WAI/intro/aria.php
http://www.w3.org/TR/wai-aria-practices/
http://www.w3.org/WAI/PF/aria/roles
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh
http://www.adobe.com/accessibility/index.html
http://tv.adobe.com/show/accessibility-adobe/
http://www.adobe.com/accessibility/products/flash

Center for Inclusive Design and Innovation

 Confidential © CIDI 37

Company Information

512 Means Street NW

Suite 250

Atlanta, Georgia 30318

Phone: 404-894-8000

Toll-Free: 866-279-2964

Fax: 404-894-8323

Customer Support Hours:

8:30am - 4:30pm EST

For customer support or technical assistance, please call 1-866-418-2750 or send an

email to cidi-support@design.gatech.edu.

Reviewers
The following AMAC staff members carried out the Georgia PINES web review:

Rayianna Daniels, Digital Accessibility Specialist, has a BS of Science in

Computer Science, along with a background in web accessibility training, web

accessibility evaluations, web development and IT support. She also provides

training on a variety of applications and assistive technology solutions to Higher

Ed institutions across the country.

John Rempel, QA Accessibility Specialist, has more than 20 years of training

experience, with certifications and extensive experience as an AT Specialist,

Vision Rehabilitation Therapist, Orientation & Mobility Specialist and Certified

Professional in Accessibility Core Competencies (CPACC) through IAAP. Due to

his own visual impairment, he relies on some of the same AT solutions and

techniques used for testing web accessibility. For additional information, read

John Rempel’s bio.

http://www.amacusg.org/bio.php?id=177
http://www.amacusg.org/bio.php?id=177

	Evergreen Application
	Evaluation Process and Deliverables
	Evaluation Environment
	Software/Configuration Used for Testing
	Browsers Used for Testing:
	Screen Readers Used for Testing:
	Operating Systems Used for Testing:
	Screen Resolutions Used for Testing:

	Background Summary
	Pages Reviewed

	Executive Summary
	Video Demonstration of the Georgia Evergreen Application
	Overall Conformance
	Remediation Needed
	Legend:
	Issue Summary by Success Criteria

	Reviewer's Report
	Detailed Feedback & Recommendations
	1. WCAG 2.0 1.1.1 A: Appropriate use of alternative text
	Applicable to:
	Impact:
	Explanation:
	Decorative

	2. WCAG 2.0 1.3.1 A: Information and Relationships
	Applicable to:
	Impact:
	Explanation:
	Programmatic Labels

	3. WCAG 2.0 1.3.1 A: Information and Relationships
	Applicable to:
	Impact:
	Explanation:
	Heading Structure

	4. WCAG 2.0 1.3.1 A: Information and Relationships
	Applicable to:
	Impact:
	Explanation:
	Data Tables

	5. WCAG 2.0 1.4.1 A: Use of Color
	Applicable to:
	Impact:
	Explanation:

	6. WCAG 2.0 1.4.3 AA: Color Contrast
	Applicable to:
	Impact:
	Explanation

	7. WCAG 2.0 1.4.5 AA: Images of Text
	Applicable to:
	Impact:
	Explanation:

	8. WCAG 2.0 2.1.1 A: Keyboard Access
	Applicable to:
	Impact:
	Explanation:
	Missing href on <a> element

	9. WCAG 2.0 2.4.3 A: Focus Order
	Applicable to:
	Impact:
	Explanation:

	10. WCAG 2.0 2.4.4 A: Link Purpose in Context
	Applicable to:
	Impact:
	Explanation:

	11. WCAG 2.0 2.4.7 AA: Focus Visible - Focus States & Indicators
	Applicable to:
	Impact:
	Explanation:

	12. WCAG 2.0 3.3.1 A: Error Identification
	Applicable to:
	Impact:
	Explanation: If an input error is automatically detected, the item that is in error is identified and the error is described to the user in text.

	13. WCAG 2.0 4.1.1 A: Validate HTML
	Applicable to:
	Impact:
	Explanation:

	Appendix A: Commonly Used Code Snippets
	Links that open new windows, dialogs or PDFs
	Hiding Content from both visual and screen reader users
	HTML and WAI-ARIA Landmarks
	Add Skip Navigation
	Content for screen reader users but not sighted users
	OPTGROUP to group OPTION elements inside a SELECT
	Tab Panel
	Keyboard
	Accessibility

	Tables
	Data Tables
	Layout Tables

	Scalable Font and Element Widths (Sizes)
	EM and REM
	Approaches & Responsive Design
	Setting <body> font-size to =”62.5%”

	Using button elements without the default formatting
	Hiding and showing content with JavaScript DOM Coding
	ARIA, Dynamic Content, alerts, and feedback
	ARIA and Dynamic Content
	WAI-ARIA
	Live Regions

	ARIA Menus
	Stack Overflow Flyout Menu Summary
	HTML structure:
	Roles:
	Properties:
	States:
	Keyboard:

	Appendix B: Screenshots
	Appendix C: Useful Resources
	W3C’s Web Accessibility Initiative (WAI)

	Company Information
	Reviewers

