[open-ils-commits] r670 - in evergreen-ils.org/docs: . 1.6/book1/sysadmin (kgs)

svn at svn.open-ils.org svn at svn.open-ils.org
Wed Sep 9 13:21:48 EDT 2009


Author: kgs
Date: 2009-09-09 13:21:44 -0400 (Wed, 09 Sep 2009)
New Revision: 670

Added:
   evergreen-ils.org/docs/1.6/book1/sysadmin/indexedfieldweighting.xml
Removed:
   evergreen-ils.org/docs/indexedfieldweighting.xml
Log:
Moving to sysadmin folder. 

Copied: evergreen-ils.org/docs/1.6/book1/sysadmin/indexedfieldweighting.xml (from rev 669, evergreen-ils.org/docs/indexedfieldweighting.xml)
===================================================================
--- evergreen-ils.org/docs/1.6/book1/sysadmin/indexedfieldweighting.xml	                        (rev 0)
+++ evergreen-ils.org/docs/1.6/book1/sysadmin/indexedfieldweighting.xml	2009-09-09 17:21:44 UTC (rev 670)
@@ -0,0 +1,233 @@
+<?xml version='1.0' encoding='UTF-8'?>
+<section xmlns="http://docbook.org/ns/docbook" xmlns:xi="http://www.w3.org/2001/XInclude"
+    xmlns:xl="http://www.w3.org/1999/xlink" version="5.0" xml:id="indexedfieldweighting">
+    <title>Indexed-Field and Matchpoint Weighting</title>
+    <info>
+        <abstract>
+            <para>This chapter describes indexed field weighting and matchpoint weighting, which
+                control relevance ranking in Evergreen catalog search results.</para>
+            <para>
+                <tip>
+                    <para>In tuning search relevance, it is good practice to make incremental
+                        adjustments, capture search logs, and assess results before making further
+                        adjustments. </para>
+                </tip>
+            </para>
+        </abstract>
+    </info>
+    <section>
+        <title>Indexed-field Weighting</title>
+        <para>Indexed-field weighting is configured in the Evergreen database in the weight column
+            of the config.metabib_field table, which follows the other four columns in this table:
+            field_class, name, xpath, and format. </para>
+        <para>The following is one representative line from the config.metabib_field table:</para>
+        <para> author | conference |
+            //mods32:mods/mods32:name[@type='conference']/mods32:namePart[../mods32:role/mods32:roleTerm[text()='creator']]
+            | mods32 | 1 ) </para>
+        <para>The default value for index-field weights in config.metabib_field is 1. Adjust the
+            weighting of indexed fields to boost or lower the relevance score for matches on that
+            indexed field. The weight value may be increased or decreased by whole integers. </para>
+        <para>For example, by increasing the weight of the title-proper field from 1 to 2, a search
+            for <emphasis role="bold">jaguar</emphasis> would double the relevance  for the book
+            titled <emphasis role="italic">Aimee and Jaguar</emphasis> than for a record with the
+            term <emphasis role="bold">jaguar</emphasis> in another indexed field. </para>
+    </section>
+    <section>
+        <title>Matchpoint Weighting</title>
+        <para> Matchpoint weighting provides another way to fine-tune Evergreen relevance ranking,
+            and is configured through floating-point multipliers in the multiplier column of the
+            search.relevance_adjustment table.</para>
+        <para> Weighting can be adjusted for one, more, or all multiplier fields in
+            search.relevance_adjustment. </para>
+        <para>You can adjust the following three matchpoints:</para>
+        <itemizedlist>
+            <listitem>
+                <para><indexterm>
+                        <primary>first_word</primary>
+                    </indexterm> boosts relevance if the query is one term long and matches the
+                    first term in the indexed field (search for <emphasis role="bold"
+                        >twain</emphasis>, get a bonus for <emphasis role="bold">twain,
+                        mark</emphasis> but not <emphasis role="bold">mark twain</emphasis>)</para>
+            </listitem>
+            <listitem>
+                <para><indexterm>
+                        <primary>word_order</primary>
+                    </indexterm> increases relevance for words matching the order of search terms,
+                    so that the results for the search <emphasis role="bold">legend
+                        suicide</emphasis> would match higher for the book <emphasis role="italic"
+                        >Legend of a Suicide</emphasis> than for the book, <emphasis role="italic"
+                        >Suicide Legend</emphasis></para>
+            </listitem>
+            <listitem>
+                <para><indexterm>
+                        <primary>full_match</primary>
+                    </indexterm> boosts relevance when the full query exactly matches the entire
+                    indexed field (after space, case, and diacritics are normalized). So a title
+                    search for <emphasis role="italic">The Future of Ice</emphasis> would get a
+                    relevance boost above <emphasis role="italic">Ice Ages of the
+                    Future</emphasis>.</para>
+            </listitem>
+        </itemizedlist>
+        <para> Here are the default settings of the search.relevance_adjustment table: </para>
+        <table xml:id="search.relevance">
+            <title>search.relevance_adjustment table</title>
+            <tgroup cols="4">
+                <thead>
+                    <row>
+                        <entry>field_class</entry>
+                        <entry>name</entry>
+                        <entry>bump_type</entry>
+                        <entry>multiplier</entry>
+                    </row>
+                </thead>
+                <tbody>
+                    <row>
+                        <entry>author</entry>
+                        <entry>conference</entry>
+                        <entry>first_word</entry>
+                        <entry>1.5</entry>
+                    </row>
+                    <row>
+                        <entry>author</entry>
+                        <entry>corporate</entry>
+                        <entry>first_word</entry>
+                        <entry>1.5</entry>
+                    </row>
+                    <row>
+                        <entry>author </entry>
+                        <entry>other </entry>
+                        <entry>first_word</entry>
+                        <entry>1.5</entry>
+                    </row>
+                    <row>
+                        <entry>author</entry>
+                        <entry>personal</entry>
+                        <entry>first_word</entry>
+                        <entry>1.5</entry>
+                    </row>
+                    <row>
+                        <entry>keyword</entry>
+                        <entry>keyword</entry>
+                        <entry>word_order</entry>
+                        <entry>10</entry>
+                    </row>
+                    <row>
+                        <entry>series</entry>
+                        <entry>seriestitle</entry>
+                        <entry>first_word</entry>
+                        <entry>1.5</entry>
+                    </row>
+                    <row>
+                        <entry>series</entry>
+                        <entry>seriestitle</entry>
+                        <entry>full_match</entry>
+                        <entry>20</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>abbreviated</entry>
+                        <entry>first_word</entry>
+                        <entry>1.5</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>abbreviated</entry>
+                        <entry>full_match</entry>
+                        <entry>20</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>abbreviated</entry>
+                        <entry>word_order</entry>
+                        <entry>10</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>alternative</entry>
+                        <entry>first_word</entry>
+                        <entry>1.5</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>alternative</entry>
+                        <entry>full_match</entry>
+                        <entry>20</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>alternative</entry>
+                        <entry>word_order</entry>
+                        <entry>10</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>proper</entry>
+                        <entry>first_word</entry>
+                        <entry>1.5</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>proper</entry>
+                        <entry>full_match</entry>
+                        <entry>20</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>proper</entry>
+                        <entry>word_order</entry>
+                        <entry>10</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>translated</entry>
+                        <entry>first_word</entry>
+                        <entry>1.5</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>translated</entry>
+                        <entry>full_match</entry>
+                        <entry>20</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>translated</entry>
+                        <entry>word_order</entry>
+                        <entry>10</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>uniform</entry>
+                        <entry>first_word</entry>
+                        <entry>1.5</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>uniform</entry>
+                        <entry>full_match</entry>
+                        <entry>20</entry>
+                    </row>
+                    <row>
+                        <entry>title</entry>
+                        <entry>uniform</entry>
+                        <entry>word_order</entry>
+                        <entry>10</entry>
+                    </row>
+                </tbody>
+            </tgroup>
+        </table>
+    </section>
+    <section>
+        <title>Combining Index Weighting and Matchpoint Weighting</title>
+        <para>Index weighting and matchpoint weighting may be combined. The relevance boost of the
+            combined weighting is equal to the product of the two multiplied values. </para>
+        <para>If the relevance setting in the config.metabib_field were increased to 2, and the
+            multiplier set to 1.2 in the search.relevance_adjustment table, the resulting matchpoint
+            increase would be 240%. </para>
+        <note>
+            <para>In practice, these weights are applied serially -- first the index weight, then
+                all the matchpoint weights that apply -- because they are evaluated at different
+                stages of the search process.</para>
+        </note>
+    </section>
+</section>

Deleted: evergreen-ils.org/docs/indexedfieldweighting.xml
===================================================================
--- evergreen-ils.org/docs/indexedfieldweighting.xml	2009-09-09 17:18:38 UTC (rev 669)
+++ evergreen-ils.org/docs/indexedfieldweighting.xml	2009-09-09 17:21:44 UTC (rev 670)
@@ -1,233 +0,0 @@
-<?xml version='1.0' encoding='UTF-8'?>
-<section xmlns="http://docbook.org/ns/docbook" xmlns:xi="http://www.w3.org/2001/XInclude"
-    xmlns:xl="http://www.w3.org/1999/xlink" version="5.0" xml:id="indexedfieldweighting">
-    <title>Indexed-Field and Matchpoint Weighting</title>
-    <info>
-        <abstract>
-            <para>This chapter describes indexed field weighting and matchpoint weighting, which
-                control relevance ranking in Evergreen catalog search results.</para>
-            <para>
-                <tip>
-                    <para>In tuning search relevance, it is good practice to make incremental
-                        adjustments, capture search logs, and assess results before making further
-                        adjustments. </para>
-                </tip>
-            </para>
-        </abstract>
-    </info>
-    <section>
-        <title>Indexed-field Weighting</title>
-        <para>Indexed-field weighting is configured in the Evergreen database in the weight column
-            of the config.metabib_field table, which follows the other four columns in this table:
-            field_class, name, xpath, and format. </para>
-        <para>The following is one representative line from the config.metabib_field table:</para>
-        <para> author | conference |
-            //mods32:mods/mods32:name[@type='conference']/mods32:namePart[../mods32:role/mods32:roleTerm[text()='creator']]
-            | mods32 | 1 ) </para>
-        <para>The default value for index-field weights in config.metabib_field is 1. Adjust the
-            weighting of indexed fields to boost or lower the relevance score for matches on that
-            indexed field. The weight value may be increased or decreased by whole integers. </para>
-        <para>For example, by increasing the weight of the title-proper field from 1 to 2, a search
-            for <emphasis role="bold">jaguar</emphasis> would double the relevance  for the book
-            titled <emphasis role="italic">Aimee and Jaguar</emphasis> than for a record with the
-            term <emphasis role="bold">jaguar</emphasis> in another indexed field. </para>
-    </section>
-    <section>
-        <title>Matchpoint Weighting</title>
-        <para> Matchpoint weighting provides another way to fine-tune Evergreen relevance ranking,
-            and is configured through floating-point multipliers in the multiplier column of the
-            search.relevance_adjustment table.</para>
-        <para> Weighting can be adjusted for one, more, or all multiplier fields in
-            search.relevance_adjustment. </para>
-        <para>You can adjust the following three matchpoints:</para>
-        <itemizedlist>
-            <listitem>
-                <para><indexterm>
-                        <primary>first_word</primary>
-                    </indexterm> boosts relevance if the query is one term long and matches the
-                    first term in the indexed field (search for <emphasis role="bold"
-                        >twain</emphasis>, get a bonus for <emphasis role="bold">twain,
-                        mark</emphasis> but not <emphasis role="bold">mark twain</emphasis>)</para>
-            </listitem>
-            <listitem>
-                <para><indexterm>
-                        <primary>word_order</primary>
-                    </indexterm> increases relevance for words matching the order of search terms,
-                    so that the results for the search <emphasis role="bold">legend
-                        suicide</emphasis> would match higher for the book <emphasis role="italic"
-                        >Legend of a Suicide</emphasis> than for the book, <emphasis role="italic"
-                        >Suicide Legend</emphasis></para>
-            </listitem>
-            <listitem>
-                <para><indexterm>
-                        <primary>full_match</primary>
-                    </indexterm> boosts relevance when the full query exactly matches the entire
-                    indexed field (after space, case, and diacritics are normalized). So a title
-                    search for <emphasis role="italic">The Future of Ice</emphasis> would get a
-                    relevance boost above <emphasis role="italic">Ice Ages of the
-                    Future</emphasis>.</para>
-            </listitem>
-        </itemizedlist>
-        <para> Here are the default settings of the search.relevance_adjustment table: </para>
-        <table xml:id="search.relevance">
-            <title>search.relevance_adjustment table</title>
-            <tgroup cols="4">
-                <thead>
-                    <row>
-                        <entry>field_class</entry>
-                        <entry>name</entry>
-                        <entry>bump_type</entry>
-                        <entry>multiplier</entry>
-                    </row>
-                </thead>
-                <tbody>
-                    <row>
-                        <entry>author</entry>
-                        <entry>conference</entry>
-                        <entry>first_word</entry>
-                        <entry>1.5</entry>
-                    </row>
-                    <row>
-                        <entry>author</entry>
-                        <entry>corporate</entry>
-                        <entry>first_word</entry>
-                        <entry>1.5</entry>
-                    </row>
-                    <row>
-                        <entry>author </entry>
-                        <entry>other </entry>
-                        <entry>first_word</entry>
-                        <entry>1.5</entry>
-                    </row>
-                    <row>
-                        <entry>author</entry>
-                        <entry>personal</entry>
-                        <entry>first_word</entry>
-                        <entry>1.5</entry>
-                    </row>
-                    <row>
-                        <entry>keyword</entry>
-                        <entry>keyword</entry>
-                        <entry>word_order</entry>
-                        <entry>10</entry>
-                    </row>
-                    <row>
-                        <entry>series</entry>
-                        <entry>seriestitle</entry>
-                        <entry>first_word</entry>
-                        <entry>1.5</entry>
-                    </row>
-                    <row>
-                        <entry>series</entry>
-                        <entry>seriestitle</entry>
-                        <entry>full_match</entry>
-                        <entry>20</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>abbreviated</entry>
-                        <entry>first_word</entry>
-                        <entry>1.5</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>abbreviated</entry>
-                        <entry>full_match</entry>
-                        <entry>20</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>abbreviated</entry>
-                        <entry>word_order</entry>
-                        <entry>10</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>alternative</entry>
-                        <entry>first_word</entry>
-                        <entry>1.5</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>alternative</entry>
-                        <entry>full_match</entry>
-                        <entry>20</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>alternative</entry>
-                        <entry>word_order</entry>
-                        <entry>10</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>proper</entry>
-                        <entry>first_word</entry>
-                        <entry>1.5</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>proper</entry>
-                        <entry>full_match</entry>
-                        <entry>20</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>proper</entry>
-                        <entry>word_order</entry>
-                        <entry>10</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>translated</entry>
-                        <entry>first_word</entry>
-                        <entry>1.5</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>translated</entry>
-                        <entry>full_match</entry>
-                        <entry>20</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>translated</entry>
-                        <entry>word_order</entry>
-                        <entry>10</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>uniform</entry>
-                        <entry>first_word</entry>
-                        <entry>1.5</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>uniform</entry>
-                        <entry>full_match</entry>
-                        <entry>20</entry>
-                    </row>
-                    <row>
-                        <entry>title</entry>
-                        <entry>uniform</entry>
-                        <entry>word_order</entry>
-                        <entry>10</entry>
-                    </row>
-                </tbody>
-            </tgroup>
-        </table>
-    </section>
-    <section>
-        <title>Combining Index Weighting and Matchpoint Weighting</title>
-        <para>Index weighting and matchpoint weighting may be combined. The relevance boost of the
-            combined weighting is equal to the product of the two multiplied values. </para>
-        <para>If the relevance setting in the config.metabib_field were increased to 2, and the
-            multiplier set to 1.2 in the search.relevance_adjustment table, the resulting matchpoint
-            increase would be 240%. </para>
-        <note>
-            <para>In practice, these weights are applied serially -- first the index weight, then
-                all the matchpoint weights that apply -- because they are evaluated at different
-                stages of the search process.</para>
-        </note>
-    </section>
-</section>



More information about the open-ils-commits mailing list