
Getting Started with Evergreen Development

1

Table of Contents

Getting started with Evergreen development... 2

Making Contact .. 2

Technologies... 2

Downloads and Virtual Images .. 3

Repositories .. 3

Procedures and Conventions for Contributing Code to the Evergreen Project .. 3

Development Projects .. 7

From Evergreen Libraries ... 7

Make Statistical Category a required and restricted field ... 7

From Google Summer of Code ... 7

Replace remote XUL in the staff client with client XUL ... 7

Create Android client(s) for Evergreen .. 7

Modernize Evergreen's Web interface... 8

Create a Ruby and/or PHP client for OpenSRF and Evergreen .. 8

Bring sanity to the Evergreen configuration interface .. 9

Enable metadata formats other than MARC21 to be first class citizens .. 9

Offer management and integration of full-text search of objects within Evergreen .. 9

Overhaul internationalization support in Evergreen .. 9

Add Customizable Toolbars to the Evergreen Staff Client .. 10

Build easier configuration interface for indexing definitions .. 10

Build a customizable dashboard to show library usage and server health .. 10

Getting Started with Evergreen Development

2

GETTING STARTED WITH EVERGREEN DEVELOPMENT
Blah Blah Blah

MAKING CONTACT
While documents have their place, there's generally no substitute for talking to existing community members - whether
you're working through a tough piece of code, or putting together a patch, or just getting your development environment
up and running - and you'll find that our development community tries to support newcomers like you. If you have
questions, the #evergreen IRC channel on Freenode is the best place to start. You can also use the Evergreen
development mailing list (open-ils-dev) if you prefer.

CORE COMMITTERS:
Name IRC Nick Email address Affiliation

Galen Charlton gmcharlt gmc@esilibrary.com Equinox Software

Bill Erickson berick erickson@esilibrary.com Equinox Software

Jason Etheridge phasefx jason@esilibrary.com Equinox Software

Lebbeous Fogle-Weekley senator lebbeous@esilibrary.com Equinox Software

Mike Rylander miker miker@esilibrary.com Equinox Software

Dan Scott dbs dan@coffeecode.net Laurentian University / CoffeeCode Consulting

Dan Wells dbwells dbw2@calvin.edu Calvin College

PRIMARY METHODS OF COMMUNICATION BETWEEN DEVELOPERS
Developers participate actively in the Development Discussion List and the IRC channel.

• Evergreen Development Discussion List: http://libmail.georgialibraries.org/mailman/listinfo/open-
ils-dev

• Freenode IRC on channel #Evergreen

Many developers also participate in the General Discussion List (where users tend to hang-out).

• Evergreen General Discussion List: http://libmail.georgialibraries.org/mailman/listinfo/open-ils-
general

• More about lists here: http://evergreen-ils.org/listserv.php#general

TECHNOLOGIES
Evergreen depends on the following technologies Perl, C, JavaScript, XML, XPath, XSLT, XMPP, OpenSRF, Apache,
mod_perl, and PostgreSQL.

Evergreen is an OpenSRF application, so in principle you can write an OpenSRF binding for any language you want.
However, in practice, Evergreen makes use of just a few languages, and for the sake of maintaining your code and
understanding it, please consider sticking with one of the following.

• Perl: business logic, vast majority of OpenSRF methods used by Evergreen are written in Perl 5, not Perl
6.

http://evergreen-ils.org/chat.php
http://evergreen-ils.org/listserv.php
http://evergreen-ils.org/listserv.php
http://libmail.georgialibraries.org/mailman/listinfo/open-ils-dev
http://libmail.georgialibraries.org/mailman/listinfo/open-ils-dev
http://libmail.georgialibraries.org/mailman/listinfo/open-ils-general
http://libmail.georgialibraries.org/mailman/listinfo/open-ils-general
http://evergreen-ils.org/listserv.php#general
http://evergreen-ils.org/opensrf.php

Getting Started with Evergreen Development

3

• JavaScript: front end, important for botht he staff client and the public catalog (less now that Template
Toolkit is being used in version 2.1)

• PL/pgSQL and PL/Perl: search code and some business logic

• HTML and CSS: public catalog and staff client
• C: core OpenSRF code; can be considered for middle-layer OpenSRF services if speed is important enough
• XUL: staff client layout

For information about OpenSRF, see Easing Gently into OpenSRF, Part 1 available at
http://journal.code4lib.org/articles/3284

You should also work through this tutorial that focuses on getting up and developing with Evergreen.

DOWNLOADS AND VIRTUAL IMAGES
The developer virtual image (OpenSRF and Evergreen trunk as of 2011-03-19 on Debian Squeeze) includes PostgreSQL 9.0
and Python support and is intended to serve as a quickstart development environment as well as a sneak peek at the latest
features in Evergreen. See the README for more information.

Downloads and other virtual images area available here: http://evergreen-ils.org/downloads.php

REPOSITORIES
• Version Control Repository for Evergreen Project: http://git.evergreen-ils.org/
• List of other source code repositories: http://evergreen-

ils.org/dokuwiki/doku.php?id=dev:code_repositories

PROCEDURES AND CONVENTIONS FOR CONTRIBUTING CODE TO THE EVERGREEN PROJECT
One of the most visible ways to contribute is through actual code. All contributions and contributors will arrive at
Evergreen from different backgrounds and will carry with them some legacy of their origin. Once reaching
Evergreen, though, some certainties can be guaranteed:

1. Each contribution will be judged individually on its technical merits as long as the contributor has followed
these guidelines

2. All contributions that are to be considered must follow project guidelines and community customs

It is expected that the person proposing a change or addition will be the one developing the patch, or in the case
of a very large addition or change, leading the implementation effort of all those interested in helping code the
feature. If you find an open proposal that you would like to work on with the original proposer then you should
feel free to ask about collaborating.

SMALL ADDITIONS AND CHANGES

 Spot some trouble, report a bug in the Evergreen bug database, and possibly propose a solution. Bug fixes and

minor adjustments to code are very important to the stability and longevity of the Evergreen project, and are

treated as full contributions. As such, you will need to write up a basic functional description of the suspected

http://journal.code4lib.org/articles/3284
http://evergreen-ils.org/~denials/workshop.html
http://evergreen-ils.org/~denials/Evergreen_trunk_Squeeze.ova
http://evergreen-ils.org/~denials/README-Evergreen_trunk_2011_03_19_Squeeze.html
http://evergreen-ils.org/downloads.php
http://git.evergreen-ils.org/
http://evergreen-ils.org/dokuwiki/doku.php?id=dev:code_repositories
http://evergreen-ils.org/dokuwiki/doku.php?id=dev:code_repositories
http://evergreen-ils.org/dokuwiki/doku.php?id=contributing#reporting_bugs
https://bugs.launchpad.net/evergreen

Getting Started with Evergreen Development

4

issue for the community to discuss as a whole. If the change is truly trivial, a core member may simply fix the

issue immediately. In this case you will be listed as a bug reporter in the next release of Evergreen.

 Wait for possible feedback. You can generally expect to hear back about a minor contribution proposal within

a day or two. You may just get a simple “nod” from another developer on the list, in which case it's fine to

proceed to the next step. Pay attention to all replies, and proceed as soon as you get the go-ahead.

 Build and submit a patch. Put together a patch that implements the fix and post it to the open-ils-dev mailing

list. You will be informed of its status by email as soon as a core team member has the chance to look at it. For

patch building guidelines, please see Submitting a Patch.

 Accept and incorporate feedback. If you receive any feedback from your patch posting, please incorporate it

and reply to the feedback thread, or ask for clarification if you are unsure of anything. This may seem

circuitous, but the next time any other community member submits a patch they may have learned from the

public feedback you received and the updated patch you sent. In any case, this is expected to be rare for

minor patches.

 It's in! After your code has been committed you will be informed by email and you will appear as a contributor

in the release notes for the next version of Evergreen.

LARGE ADDITIONS AND CHANGES

 Propose a design. Because Evergreen has not only a legacy of its own but a basic road map for future

implementation, any new potential features need to be weighed against the overall strategic plan and internal

architecture. You will need to write up a full functional and basic implementation proposal for the community

to discuss as a whole. More information about what is expected in such a proposal for discussion can be found

in the section entitled How to Propose Features.

 Wait for and expect feedback. It is highly unlikely that you are the only one interested in a particular feature,

and time must be given for others to comment on the basic design. How much time depends on the breadth

and depth of the change or addition proposed, but no less than a few days (more, if it's over a weekend,

holiday or the relevant core team members are unavailable) will suffice. Expect both positive and negative

technical feedback, as there will likely be competing and parallel ideas for any non-trivial change. Discussion

should surround the proposal and suggestions for improvement will be made at this time. This is where the

big-picture things are hashed out.

 Lather, rinse, repeat. It is expected that, following technical feedback from the community, and particularly

from existing developers, you will incorporate relevant consensus building feedback into your design. Once

there is positive consensus (as opposed to “acceptance by inaction”), proceed to the next step.

 Write the code. Having come to a general consensus with the community, create some working code against

your test installation. Ideally, do your work in a publicly visible repository, such as one created for you on

http://evergreen-ils.org/dokuwiki/doku.php?id=contributing#submitting_a_patch
http://evergreen-ils.org/dokuwiki/doku.php?id=contributing#how_to_propose_features

Getting Started with Evergreen Development

5

the Evergreen community Git server repository, a Bazaar branch, or a git repository on Gitorious or similar

public repository. Working in a public repository makes it possible for others to collaborate with you.

 Submit your code to the project. As a community project, the community decides what code goes into the

official releases of the software on the Evergreen downloads page. This effort is lead by the core development

team, those with git commit privileges, and can be informed by anyone in the community who wants to

comment. Code contributions are reviewed based on the style of the new code in relation to surrounding, pre-

existing code (where applicable), equality with the proposal that met consensus, and overall quality. The

process for submitting code is covered in the following section, Submitting code to the project.

 Accept and incorporate feedback. Contributed code, having been reviewed, may require some adjustment,

and further discussion will often happen as more developers try out your code. In such cases, minor

adjustments may be made by the committing core team member without further discussion.

 It's in! After your code has been committed you will be informed by email and you will appear as a contributor

in the release notes for the next version of Evergreen.

EXTERNAL CONTRIBUTIONS

 Identify an ancillary project that you would like to integrate with, or create for the support of, Evergreen.

Evergreen proper can't (and shouldn't) contain everything useful to the project or the users. If you see a need

that can be fulfilled by an outside resource, but would affect the overall project (such as installation or

migration projects, or external activities that point to the Evergreen project) then it serves everyone, the

community and the contributor, well to get buy-in and input from the Evergreen community. You're likely to

find a great deal of help and enthusiasm, as well.

 Submit a basic proposal. Create a proposal following the guidelines in listed in the section How to Propose

Features to lay out a plan.

 Wait for possible feedback. You can generally expect to hear back about an external contribution proposal

within a day or two. Discussion is important here, though probably won't be as extensive as a non-trivial

feature proposal. Wait until consensus is reached by discussion participants, and strongly consider any

suggestions and feedback they provide.

 Go forth! (But keep us up to date) Build or integrate your solution after considering all feedback. Remember to

announce the project's completion (or parts thereof) on both the open-ils-dev and open-ils-general mailing

lists, so that any other community members who would like to can help you continue to improve the external

component.

HOW TO PROPOSE FEATURES
Proposing a new non-trivial addition to the Evergreen project is fairly easy. After making sure that someone else
hasn't claimed the feature by asking on the Evergreen development mailing list, collect the information required

http://git.evergreen-ils.org/
https://code.launchpad.net/evergreen
http://gitorious.org/
http://evergreen-ils.org/downloads
http://evergreen-ils.org/dokuwiki/doku.php?id=contributing#how_to_propose_features
http://evergreen-ils.org/dokuwiki/doku.php?id=contributing#how_to_propose_features
http://libmail.georgialibraries.org/mailman/listinfo/open-ils-dev

Getting Started with Evergreen Development

6

for the community to discuss the addition completely and thoroughly. The minimum requirements for this
information are:

 Basic overview of the feature or change

 An explanation of the existing code – it's structure and purpose – if applicable

 An explanation of why this code needs to change, if applicable

 A full explanation of the new or replacement feature including implementation plans

 Analysis of what this change will effect in the existing code base

 Analysis of what ways, if any, this addition or change can be leveraged for future planned development
An emerging method of proposing features is to:

1. collect the information on a page on the Evergreen wiki in the dev:proposal namespace

2. add a Blueprint entry with the basic overview and a link to the corresponding wiki page

3. send the basic overview and links to the Blueprint and wiki page to the Evergreen development mailing

list with a subject line beginning with Feature Proposal

For more on the procedures and conventions for contributing code to the Evergreen Project, see http://evergreen-
ils.org/dokuwiki/doku.php?id=contributing.

Guidelines for Git contributors are available here: http://evergreen-
ils.org/dokuwiki/doku.php?id=dev:git#guidelines_for_contributors

http://evergreen-ils.org/dokuwiki/doku.php?idx=dev%3Aproposal
https://blueprints.launchpad.net/evergreen
http://libmail.georgialibraries.org/mailman/listinfo/open-ils-dev
http://libmail.georgialibraries.org/mailman/listinfo/open-ils-dev
http://evergreen-ils.org/dokuwiki/doku.php?id=contributing
http://evergreen-ils.org/dokuwiki/doku.php?id=contributing
http://evergreen-ils.org/dokuwiki/doku.php?id=dev:git#guidelines_for_contributors
http://evergreen-ils.org/dokuwiki/doku.php?id=dev:git#guidelines_for_contributors

Getting Started with Evergreen Development

7

DEVELOPMENT PROJECTS

FROM EVERGREEN LIBRARIES
These are projects that current Evergreen libraries have requested. In each case, money is available for these
developments.

MAKE STATISTICAL CATEGORY A REQUIRED AND RESTRICTED FIELD
In the Patron Registration, libraries can designate users in a statistical category of their choosing. However, this
field is not required therefore it can be bypassed during the patron registration process. In order for it to provide
reliable statistical data, it must be required. Also, individual libraries can now add new entries to this table
creating additional confusion. These entries should be settable by the Evergreen Admin only (or allow the
Evergreen Admin to restrict them). Also, a default setting should be settable on a library by library basis.

Use case: Bibliomation uses the statistical category table to define “residency.” They would like to set the
allowable fields that will apply and restrict these settings from being changed by individual libraries. In addition,
the default should be associated with the local jurisdiction of the registrant.

 Sponsor: Bibliomation

FROM GOOGLE SUMMER OF CODE
These are projects that were developed as part of the Google Summer of Code. In most cases, money would have
to be sought for funding these developments because it was hoped that Google funds would cover them.

REPLACE REMOTE XUL IN THE STAFF CLIENT WITH CLIENT XUL

 Problem: Mozilla has announced that the ability to run XUL from servers is deprecated, and that eventually

only XUL on the client will be supported. The Evergreen GUI client used by staff is built on the XULRunner framework

and - you guessed it - relies heavily on remote XUL. We need to convert our remote XUL to run on the client.

 Required skills: JavaScript, DOM, XML

 Level of difficulty: Low to Moderate

 Mentors: Jason Etheridge

CREATE ANDROID CLIENT(S) FOR EVERGREEN

 Problem: Android is a great smartphone and tablet operating system. So what's the problem? An open source library

system deserves great open source smartphone/tablet applications, but apart from mobile browsers on Android, there

is a complete lack of Android applications that interoperate with Evergreen. However, Evergreen has a (slightly

outdated, but mostly functional) Java client library to build on - so a summer of Android/Evergreen development

should result in one or more Android applications. These could include:

Getting Started with Evergreen Development

8

 a library patron app - enable a user to search the catalogue, renew items, manage holds, change their address

information

 an inventory app - attach a USB barcode scanner to a tablet and scan the collection

 Required skills: Java

 Level of difficulty:

 Bonus points: Provide a framework which libraries can use to create a customized version of the application.

Libraries should be able to specify their particulars such as library name, logo, URLs, contact info, hours of operation,

location, etc) and then click “Build” to generate a customized APK.

 Mentors: Dan Scott

MODERNIZE EVERGREEN'S WEB INTERFACE

 Problem: Evergreen was an early adopter of the Dojo Toolkit, as its JavaScript widgets provided a powerful,

approachable Web-based user interface. However, we are stuck using the 1.3 branch of Dojo (released in March,

2009) due to our dependence on some deprecated features such as the original Dojo Grid. Recent versions of Dojo

offer more functionality, improved usability, better browser support, and greatly enhanced accessibility. Your job is to

overcome the forces of inertia and enable Evergreen to adopt Dojo 1.6.

 Required skills: JavaScript

 Level of difficulty: Low

 Bonus points: Use Dojo test harnesses, or some other JavaScript testing framework, to build a test bed that ensures

the quality of your own work and prevents those who follow you from desecrating your heavenly creation with

regressions.

 Mentors: Galen Charlton, Dan Scott

CREATE A RUBY AND/OR PHP CLIENT FOR OPENSRF AND EVERGREEN

 Problem: There are Perl, C, Python, and Java clients for Evergreen today, but the lack of a PHP client means that it is

harder than it should be to integrate Evergreen with popular frameworks such as Drupal and Wordpress, as well as

with library-specific applications such as VuFind. Ruby has been a popular language for a number of years and first-

class support for Ruby integration would open up another class of applications.

 Required skills: PHP or Ruby

 Level of difficulty: Medium

 Bonus points: As you create the OpenSRF and Evergreen clients, create formal specifications for OpenSRF and the

pertinent parts of Evergreen such as the fieldmapper IDL.

 Mentors: Dan Scott

http://dojotoolkit.org/

Getting Started with Evergreen Development

9

BRING SANITY TO THE EVERGREEN CONFIGURATION INTERFACE

 Problem: There are currently 139 individual settings that a library can change within one interface in the Evergreen

staff client. The presentation is a simple alphabetical list, with no further means of filtering these settings. Help for

these rather complex settings is limited to a single string. There is no provision for tracking changes to the system

configuration over time to correlate configuration changes to problems that may be observed. This interface is

daunting for system administrators and would greatly benefit from a skilled user interface designer/implementer.

 Required skills: JavaScript, CSS

 Level of difficulty: Easy to medium

 Mentors: Galen Charlton

ENABLE METADATA FORMATS OTHER THAN MARC21 TO BE FIRST CLASS CITIZENS

 Problem: While Evergreen is built on an advanced platform, much of its database schema, search indexing and

results display, and tooling assumes that the loved-by-libraries-but-oh-so-limited MARC21 is the sole format in which

metadata will be stored and maintained. To support a broader base of knowledge-based institutions, many of which

use more modern metadata formats, Evergreen needs to be taught how to ingest, index, display, and edit other

metadata formats without requiring them to be converted to MARC21.

 Required skills: SQL, XML, XSLT

 Level of difficulty: Medium to hard

 Mentors: Dan Scott, Galen Charlton

OFFER MANAGEMENT AND INTEGRATION OF FULL-TEXT SEARCH OF OBJECTS WITHIN EVERGREEN

 Problem: Evergreen is currently limited to searching metadata, but our knowledge institutions are increasingly

moving towards offering either born digital objects (ebooks, electronic journals, theses and dissertations) or digitized

works. Consequently, a frequently asked question is whether there is a way to search full-text objects along with just

metadata, and the current answer is “no”. One way to change this answer is to tightly integrate Evergreen with an

existing digital repository such as DSpace or Fedora; alternately, one could add full-text digital object support directly

to Evergreen.

 Required skills: Full-text search (Solr, Sphinx, …)

 Level of difficulty: High

 Mentors: Galen Charlton

OVERHAUL INTERNATIONALIZATION SUPPORT IN EVERGREEN

 Problem: Internationalization (i18n) support in the public interface and most of the staff client was added several

years ago, but while an effort was made to standardize on GNU gettext as an intermediate format, the effort was

Getting Started with Evergreen Development

10

somewhat rudimentary and many new interfaces have subsequently been added that lack i18n support. Given the

increasing adoption of Evergreen outside of North America, the time is right to revisit some of the initial i18n

approaches and deliver a consistent approach to i18n throughout the application, with an eye towards the addition of

right-to-left support for bidirectional languages; locale-sensitive currency, time, and date support; and use of a shared

system across timezones.

 Required skills: JavaScript, Perl

 Level of difficulty: Medium

 Mentors: Dan Scott

ADD CUSTOMIZABLE TOOLBARS TO THE EVERGREEN STAFF CLIENT

 Problem: The Evergreen Staff Client has a single toolbar that can be shown or not. The buttons on it are hard coded

into the XUL interface, and as such it cannot be easily customized for different libraries, workstations, user accounts,

and so forth. Ideally there would be multiple default toolbars for different functions (such as cataloging or circulation),

and those and new ones would be customizable by workstation, library, or user.

 Required skills: JavaScript, DOM

 Level of difficulty: Low

 Mentors: Jason Etheridge

BUILD EASIER CONFIGURATION INTERFACE FOR INDEXING DEFINITIONS

 Problem: Currently Evergreen requires the use of XSLT and XPath to configure the mapping of metadata field to

search indexes. This is not the friendliest of interfaces for many librarians to use. A interface that allows the

expression of index definitions in terms more familiar to librarians (e.g., MARC tags, headings, and named metadata

fields) would make it much easier for librarians to customize their use of Evergreen.

 Required skills: JavaScript, XML, XSLT, Perl

 Level of difficulty: Medium

 Mentors: Galen Charlton

BUILD A CUSTOMIZABLE DASHBOARD TO SHOW LIBRARY USAGE AND SERVER HEALTH

 Problem: Up-to-date information about the use of the library and the health of its servers is available in reports and

logfiles, but few stakeholders have the access, expertise, and initiative to check those sources. A dashboard

framework with useful starter components would make this information ambiently available with just a glance. It

would be useful to be able to show the current number of loaned/overdue items; current total overdues owed;

average number of renewals per circ modifier; number of circulations in/out per n minutes. For internal use, it would

also be useful to show server load, free memory and disk space, etc. as recorded by nagios, MRTG, et

al. http://library.brown.edu/dashboard/info/ has some great ideas.

http://library.brown.edu/dashboard/info/

Getting Started with Evergreen Development

11

 Required skills:

 Level of difficulty:

 Mentors: Dan Scott

	Getting started with Evergreen development
	Making Contact
	Core Committers:
	Primary Methods of Communication Between Developers

	Technologies
	Downloads and Virtual Images
	Repositories
	Procedures and Conventions for Contributing Code to the Evergreen Project
	Small additions and changes
	Large additions and changes
	External contributions
	How to Propose Features

	Development Projects
	From Evergreen Libraries
	Make Statistical Category a required and restricted field

	From Google Summer of Code
	Replace remote XUL in the staff client with client XUL
	Create Android client(s) for Evergreen
	Modernize Evergreen's Web interface
	Create a Ruby and/or PHP client for OpenSRF and Evergreen
	Bring sanity to the Evergreen configuration interface
	Enable metadata formats other than MARC21 to be first class citizens
	Offer management and integration of full-text search of objects within Evergreen
	Overhaul internationalization support in Evergreen
	Add Customizable Toolbars to the Evergreen Staff Client
	Build easier configuration interface for indexing definitions
	Build a customizable dashboard to show library usage and server health

